Об одной теореме теории чисел

Формулировка теоремы Ферма из теории алгебраических чисел. Доказательство данной теоремы методом "от противного": сначала предполагается выполнение основного равенства теоремы, а затем показывается его нарушение, приводящее к выполнению утверждения.

Подобные документы

  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация, добавлен 01.02.2016

  • Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.

    статья, добавлен 11.07.2015

  • История открытия теоремы Пифагора. Способы доказательства теоремы. Древнекитайское и древнеиндийское доказательства. Теорема Евклида и доказательство Хоукинса. Геометрическое доказательство методом Гарфилда. Доказательство теоремы Бхаскари-Ачарна.

    реферат, добавлен 08.05.2012

  • Исследование цепных дробей, раскрытие их свойств. Особенности разложения действительных чисел. Анализ погрешностей, возникших в результате раскладывания. Применение теории цепных дробей для решения алгебраических задач, доказательство теоремы Лагранжа.

    курсовая работа, добавлен 14.06.2014

  • Формулы Абеля для Случая I и II Великой теоремы. План предметного доказательства Основного утверждения. Прототип Великой теоремы к части А и В. Внушительный текущий результат по элементарному доказательству Великой теоремы, новизна в подходе к проблеме.

    книга, добавлен 01.12.2010

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Фундаментальное значение теоремы Пифагора для геометрии. Методы Евклида и Леонардо Давинчи. Алгебраическая формулировка теоремы. Доказывание ее через подобные треугольники, равнодополняемость, методом площадей. Применение в Индии "правила веревки".

    презентация, добавлен 17.11.2015

  • Завершение проблемы великой теоремы Ферма (ТФ). Бесконечный спуск для нечётных показателей. Доказательство ТФ методами элементарной алгебры. Алгоритм решения Диофантовых уравнений. Закономерность распределения простых чисел в натуральном числовом ряду.

    статья, добавлен 30.03.2017

  • Краткая биография древнегреческого философа и ученого Пифагора Самосского, его роль в развитии математики. Моральный кодекс пифагорейцев. История создания теоремы Пифагора, различные формулировки и способы доказательства. Задачи на применение теоремы.

    реферат, добавлен 18.04.2015

  • Обзор теоремы Чебышева о распределении простых чисел, рассматриваются функции, приближающие простые числа, а также вводится новая функция, достаточно хорошо приближающая простые числа. Приводится обзор результатов по распределению простых чисел.

    статья, добавлен 20.05.2017

  • История разработок и формирования теоремы Пифагора, причины ее популярности: простота – красота – значимость. Исследование некоторых классических доказательств теоремы Пифагора, известных из древних трактатов. Оценка важности и значимости данной теоремы.

    реферат, добавлен 10.11.2010

  • Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.

    реферат, добавлен 12.09.2010

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

  • Представление целых чисел с помощью письменных знаков. Характеристика аспектов биномиальной теоремы. Методика распределения простых чисел. Рассмотрение рациональных чисел как средства измерения. Теорема Лиувилля и конструирование трансцендентных чисел.

    книга, добавлен 25.11.2013

  • Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.

    курсовая работа, добавлен 03.05.2014

  • Описание доказательства теоремы Хоукинга, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Особенности этапов решения данной теоремы путем разложения прямоугольного треугольника на два равнобедренных.

    задача, добавлен 23.02.2011

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Рассмотрение основной задачи геометрии чисел, а также теоремы Минковского с её доказательством. Объяснение таких понятий геометрии чисел, как решётки и критические решётки. В работе приводится, так называемая, "неоднородная задача" геометрии чисел.

    курсовая работа, добавлен 22.04.2011

  • Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.

    дипломная работа, добавлен 22.04.2011

  • Биография Пифагора, история открытия и различные формулировки его теоремы. Характеристика способов доказательства, особенности геометрических и алгебраических методов. Значение теоремы Пифагора и ее применение. Практикум по решению задач школьного курса.

    курсовая работа, добавлен 30.03.2013

  • Определение и проверка вероятности предельных теорем, а именно теоремы Бернулли и закона больших чисел Чебышева. Определение коэффициентов простой линейной регрессии, полученных в ходе проведенных испытаний, анализ и проверка статистических гипотез.

    курсовая работа, добавлен 06.08.2013

  • Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.

    реферат, добавлен 03.04.2017

  • Описание упорядоченных структур в теории множеств с самопринадлежностью. Счетность количества обозначений. Несчетность множества точек на прямой и счетность количества n обозначений чисел на отрезке. Классические утверждения теоремы Гёделя о нечетности.

    статья, добавлен 26.04.2019

  • Формирования условий в центральных предельных теоремах, при которых последовательности частичных сумм случайных величин сходятся к нормальному распределению. Закон больших чисел. Предельные теоремы перехода от дискретных случайных процессов к непрерывным.

    лекция, добавлен 21.03.2018

  • Формулировка теоремы, утверждающей, что тройки простых чисел составляют бесконечное множество. Решение задачи подбора совокупности двух параметров, удовлетворяющих принцип наименьших квадратов. Функция натурального аргумента, оценка погрешностей.

    статья, добавлен 26.01.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.