Генерирующий многочлен для циклических 2-групп над полями характеристики два
Определение генерирующего многочлена. Построение генерирующих многочленов для циклических групп порядков 4, 8 и 16 над полями характеристики два. Обзор известных результатов по генерирующим многочленам для циклических групп. Конструкция Cohen’a Nakano.
Подобные документы
Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
презентация, добавлен 26.09.2017Понятие алгебраической операции, ее характеристики и свойства, отличительные признаки и направления исследования. Свойства и изоморфизм групп. Реализация абстрактной группы как группы преобразований. Теорема о подгруппах конечной циклической группы.
реферат, добавлен 18.06.2015Построение решения дифференциального уравнения. Подбор многочлена, описывающего полученное решение. Определение корней многочлена на полученном интервале. Алгоритм вычислений для классического метода Рунге-Кутта. Интерполяция функции на данном интервале.
курсовая работа, добавлен 07.08.2013Сущность многочленов: понятие, степень, равенство, операции, схема Горнера. Характеристика многочленов нулевой степени. Значение корней многочленов в алгебре. Особенности схемы Горнера, примеры симметричных многочленов и проверка корня на кратность.
курсовая работа, добавлен 19.01.2012Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.
презентация, добавлен 30.10.2013Преобразование целых выражений. Понятие многочлена как суммы одночленов. Правило умножения многочлена на многочлен. Формулы квадрата суммы и разности, разности квадратов, куба суммы и разности. Представление в виде многочлена, разложение его на множители.
презентация, добавлен 19.12.2013Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.
статья, добавлен 12.08.2020Интерполяционная задача Эрмита о построении многочлена, принимающего заданные значения функции и ее производных в узловых точках. Упрощение вывода формулы интерполяционного многочлена Эрмита. Интерпретация многочлена в представлениях многочлена Тейлора.
статья, добавлен 12.05.2018Поиск циклического изоморфизма среди групп 2-го и 3-го порядка. Построение таблицы Келли для групп различного порядка. Доказательство теоремы о циклическом изоморфизме. Элементы симметрической группы. Система матричных уравнений. Группы матриц Паули.
научная работа, добавлен 30.08.2011Программные способы получения последовательностей большого периода. Анализ преимуществ и недостатков мультипликативного генератора Фибоначчи. Использование компьютерной алгебры Sage для случайной генерации комбинаций квадратных матриц с конечными полями.
статья, добавлен 14.08.2022Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.
курсовая работа, добавлен 23.04.2014- 37. Схема Горнера
Схема Горнера как алгоритм вычисления значения многочлена, записанного в виде суммы мономов, при заданном значении переменной. Решение уравнений высшей степени (деление многочлена с помощью схемы Горнера). Ее использование для деления многочлена на бином.
презентация, добавлен 18.12.2018 Определение многочленов Чебышева, их краткая характеристика и особенности. Рассмотрение случая произвольного отрезка. Описание дифференциального уравнения многочленов и квадратурной формулы, сравнение их погрешностей. Общее понятие термина алгоритм.
курсовая работа, добавлен 14.04.2014Анализ многочленов Лежандра и Чебышева, преобразования Лапласа. Обращение преобразования Лапласа с помощью многочленов, ортогональных на конечном промежутке, с применением смещенных многочленов Лежандра, смещенных многочленов Чебышева первого рода.
контрольная работа, добавлен 01.12.2020Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020- 41. Интерполяция
Интерполяционная формула Лагранжа. Определение производных функции. Оценка остаточного члена. Исчисление корня уравнения с помощью обратного интерполирования. Построение интерполяционного многочлена Ньютона. Сущность вычислительных методов алгебры.
контрольная работа, добавлен 23.04.2011 Метод Ньютона - универсальный способ нахождения границ многочлена. Раскрытие схемы Горнера. Доказательство теоремы Штурма. Сущность алгоритмов итераций, половинного деления, хорд и касательных. Решение задач на вычисление уравнений высших степеней.
курсовая работа, добавлен 06.01.2014Основные понятия из теории групп, и классов Фиттинга. Определение классов Фиттинга и их основные свойства, F-радикалы и F-инъекторы. Произведение классов Фиттинга как средство для построения новых классов с помощью операции их радикального произведения.
дипломная работа, добавлен 19.04.2011Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.
реферат, добавлен 14.12.2015Рассмотрение одного из возможных способов применения принципа сжимающих отображений в теории специальных функций на примере классических ортогональных многочленов. Описание возможности получения формулы Планшереля Ротаха для многочленов Чебышева.
диссертация, добавлен 28.12.2013Проблема построения в явном виде модели Нерона для всех двумерных анизотропных торов над локальными полями с использованием модели Воскресенского. Общая логика алгоритма построения модели алгебраического тора Нерона с помощью процесса сглаживания.
статья, добавлен 31.05.2013Последовательность и вид многочленов на конечной степени точек в частных случаях. Сила нормированности. Определение коэффициентов Фурье. Применение метода наименьших квадратов. Ортогональные многочлены системы. Интерполяционный многочлен Лагранжа.
контрольная работа, добавлен 20.05.2013Особенности состава и содержания приводимых и неприводимых многочленов. Признаки неприводимости многочленов по Эйзенштейну, Дюма и Ньютону. Использование полиномов третьей и четвёртой степени при моделировании временных рядов экономических показателей.
курсовая работа, добавлен 13.11.2016Правила деления многочленов и их представление в канонической форме. Нахождение наибольшего общего делителя двух многочленов и двух натуральных чисел. Возможности упрощения вычислений наибольшего общего делителя в алгоритме Евклида, примеры решения задач.
контрольная работа, добавлен 26.10.2012Разделы теории групп: конечные, абелевы, разрешимые и др. Теорема о единственности разложения в сумму примарных абелевых групп по разным простым числам. Накрывающее свойство свободной абелевой группы конечного ранга и доказательство структурной теоремы.
курсовая работа, добавлен 15.01.2015