Необходимые и достаточные условия минимума функций нескольких переменных
Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
Подобные документы
Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.
лекция, добавлен 26.01.2014Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.
контрольная работа, добавлен 16.05.2014Рассмотрение понятий: аргумента, области определения. Методика изучения линейной, квадратной и кубической функции. Изучение уравнений параболического типа. Основные характеристики математических функций. Достаточные условия экстремума уравнения.
курсовая работа, добавлен 05.05.2015Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.
лекция, добавлен 05.03.2009Понятие о функции двух переменных. Понятие и содержание линии уровня функции, порядок ее нахождения. Предел и его свойства. Непрерывность и дифференцируемость функции двух переменных. Частные производные. Методика определения дифференциала и градиента.
контрольная работа, добавлен 20.09.2011Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.
курсовая работа, добавлен 26.05.2015Предел функций многих переменных. Анализ пределов и непрерывности в многомерных пространствах. Нахождение частной производной и кратное интегрирование. Фундаментальная теорема анализа функций многих переменных. Теоремы интегрирования векторного анализа.
контрольная работа, добавлен 27.11.2013Частные производные функции нескольких переменных. Градиент функции, касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных. Метод множителей Лагранжа. Решение задач нелинейного программирования с двумя переменными.
учебное пособие, добавлен 17.04.2013Разработка и обоснование новых и эффективных методов глобальной минимизации некоторых специальных классов негладких функций на выпуклых множествах. Разработка метода нахождения минимума негладкой выпуклой функции многих переменных на симплексе.
автореферат, добавлен 30.06.2018Характеристика значения оптических плотностей для плашек после сканирования при разных значениях яркости. Определение необходимого условия экстремума функции многих переменных, которое приводит к системе уравнений. Расчет задачи в матричном виде.
контрольная работа, добавлен 23.09.2014- 37. Производная
Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.
реферат, добавлен 26.06.2013 Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
контрольная работа, добавлен 09.04.2016Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.
контрольная работа, добавлен 10.04.2020Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.
контрольная работа, добавлен 04.11.2012Интерпретация функции двух переменных на основе понятий дифференциального исчисления. Частные производные и дифференциал. Понятие производной по направлению. Градиент функции трех переменных. Уравнение касательной плоскости и нормали к поверхности.
реферат, добавлен 04.05.2015Характеристика главных способов задания функции: табличная, аналитическая. Сущность области определения и предел функции двух переменных. Основные правила нахождения пределов. Непрерывность функции двух переменных, описание свойств и определений.
лекция, добавлен 29.09.2013Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.
контрольная работа, добавлен 17.06.2014Вычисление минимума функции двух переменных, характеристика и особенности алгоритма метода Коши. Преимущества применения метода золотого сечения. Нахождение решения дифференциального уравнения, удовлетворяющего так называемым начальным условиям.
лабораторная работа, добавлен 06.10.2022Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017Предел функции как величина, к которой стремится рассматриваемая функция при стремлении её аргумента к данной точке. Понятие функции нескольких переменных, вводимое для изучения подобных зависимостей. Область определения и непрерывность функции.
эссе, добавлен 18.10.2013Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.
курс лекций, добавлен 18.02.2012Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.
лекция, добавлен 12.07.2015Задание булевых функций от переменных с помощью таблицы истинности, определение формулы, виды важнейших равносильностей (законов) алгебры логики. Равносильные формулы, законы равносильности, логические уравнения. Разложение булевых функций по переменным.
лабораторная работа, добавлен 09.08.2010