Выявление предметов одежды на изображение алгоритмами детектирования и сегментирования
Примеры задач компьютерного зрения. Методы машинного обучения. Модели нейронных сетей для задачи мульти-классификации и детектирования. Порядок создания системы детектирования и сегментирования предметов одежды на фото. Нейронные сети, модель SSD300.
Подобные документы
Анализ хаотических процессов при небольшом объеме входных данных. Модели искусственного нейрона с нелинейными синаптическими входами. Настройка свободных параметров сети в градиентном алгоритме обучения нейронной сети с нелинейными синаптическими входами.
автореферат, добавлен 29.03.2018Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.
статья, добавлен 02.04.2019Эталонная модель Всемирного форума по интернету вещей. Анализ центров обработки данных и облачных вычислений. Исследование подходов к разработке распределенных алгоритмов обучения. Методы машинного обучения. Изучение наивного байесовского классификатора.
дипломная работа, добавлен 07.12.2019Определение алгоритмов (оптимизационных методов) обучения искусственных нейронных сетей. Характеристика их видов: метод случайного поиска и стохастического градиентного спуска. Оценка программной реализации адаптивного метода обучения нейронной сети.
статья, добавлен 29.05.2017Методы обработки данных и построения архитектур нейронных сетей для выполнения поведенческого анализа вредоносного программного обеспечения. Сделаны выводы требованиях к данным в рамках рассматриваемой задачи и об эффективности предложенной методики.
статья, добавлен 05.09.2021Классификация искусственных нейронных сетей по различным признакам. Структура простейшей и гексагональной однослойной регулярной сети. Определение направлений связи между нейронами. Предобработка данных, основные технологии. Оптимизация нейронных сетей.
лекция, добавлен 26.09.2017Исследование методов машинного обучения для автоматического выявления вирусной активности в вычислительных системах. Наивный байесовский подход, методы опорных векторов, ближайших соседей, построения деревьев решений. Искусственные нейронные сети.
дипломная работа, добавлен 23.09.2018Анализ моделей адаптивного поведения. Модель эволюционного возникновения коммуникаций в коллективе роботов. Бионическая модель поискового адаптивного поведения. Основные принципы построения модели адаптивного поведения системы на базе нейронных сетей.
дипломная работа, добавлен 07.08.2018Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.
статья, добавлен 15.07.2020- 85. Нейронные сети
Примеры определения масштаба функций в нейронных сетях. Математическое описание цифровых моделей в нейронных сетях. Выбор интервала дискретизации, описание процесса квантования по времени. Оптимальная коррекция динамических погрешностей измерений.
контрольная работа, добавлен 15.01.2018 Особенности применения искусственных нейронных сетей для решения задачи классификации уровня формирования. Анализ решения задачи автоматической классификации уровня формирования по данным об идентифицированных объектах на электронной карте местности.
статья, добавлен 02.04.2019- 87. Нейронные сети
Рассмотрение искусственных нейронных сетей, различий между их базовыми архитектурами. Способность к обучению как основное свойство мозга. Оценка эволюции технологий телекоммуникации. Особенности развития организаций, занимающихся внедрением сетей.
реферат, добавлен 19.12.2014 - 88. Нейронные сети
Модель нелокального нейрона, являющаяся обобщением классической модели Дж. Маккалоки и У. Питтса. Когнитивная аналитическая система "Эйдос". Искусственные нейронные сети, проблемы и перспективы. Моделирование иерархических структур обработки информации.
научная работа, добавлен 26.08.2010 - 89. Прогнозирование котировок финансовых инструментов с помощью нейронных сетей и машинного обучения
Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.
контрольная работа, добавлен 30.08.2016 Сущность и структура простой рефлекторной нейронной сети, ее главные консонанты и функциональные особенности. Биологическая изменчивость и закономерности обучения. Классификация и формы данных сетей, типы используемой информации, применяемые модели.
контрольная работа, добавлен 27.11.2014Рассмотрение проблемы создания органических компьютеров, построенных из живых нейронов, с помощью которых сегодня появляется возможность спроектировать новые поколения вычислительных устройств. Нейронные сети как способ решения сложнейших задач.
статья, добавлен 26.04.2019Разработка новых методов решения проблемы предсказывания (определения) цен акций на фондовом рынке с помощью технологии датамайнинга и машинного обучения, а именно нейронных сетей как инструмента имитации агента, торгующего на фондовом или другом рынке.
дипломная работа, добавлен 26.08.2016Преимущества применения нейронных сетей для распознавания объектов. Разработка алгоритма обработки образа с помощью нечеткой логики в системе технического зрения. Бинаризация и кодирование изображения при его преобразовании из цветного в оттенки серого.
курсовая работа, добавлен 29.03.2021Описание модели динамического нейрона. Разработка новых методов обучения нейронных сетей, генерирующих спайки. Анализ аспектов функционирования нейрона, как детектора временных последовательностей сигналов. Исследование задач обучения нейрона с учителем.
статья, добавлен 18.01.2018Локальность при обработке информации, как важный принцип, по которому строятся биологические нейронные сети. Метод обучения Хэбба. Сеть с линейным поощрением. Дискретный градационный сигнал с двумя возможными значениями. Задача и алгоритмы классификации.
презентация, добавлен 16.10.2013Обзор алгоритмов машинного обучения. Исследование функционалов ошибки и метрики. Использование градиентного бустинга при обучении нейронных сетей. Главный анализ линейной регрессии и регуляризаторов. Характеристика алгоритма адаптации градиента.
дипломная работа, добавлен 28.08.2020Рассмотрение понятия спама и обзор существующих способов фильтрации. Разработка методов детектирования писем-трансформеров, устойчивых к небольшим изменениям текста и темы сообщения. Рассмотрение проблемы обнаружения намеренно искаженных фрагментов.
статья, добавлен 26.04.2019Роль искусственного интеллекта в геоинформационных системах и его влияния на геоинформационную науку. Использование нейронных сетей и машинного обучения в геоинформационных системах. Применение программных средств для решения геоинформационных задач.
статья, добавлен 28.09.2024Описание принципов работы технологии искусственных нейронных сетей. Алгоритмы построения обучения сетей, возможности снижения временных затрат, необходимых для такого обучения. Обобщенная схема нейрона. Схема разделения вектора весов по ИР-элементам.
статья, добавлен 12.07.2021Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
книга, добавлен 18.01.2011