Математическое программирование. Линейное и нелинейное программирование
Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.
Подобные документы
Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).
курсовая работа, добавлен 05.06.2015- 77. Численные методы
Задача линейного программирования. Определение максимума и минимума значения функции. Система линейных ограничений. Этапы решения задачи графическим методом. Универсальный метод решения систем линейных уравнений. Алгоритм двойственного симплекс-метода.
контрольная работа, добавлен 30.04.2013 Математические постановки и разнообразие формулировок задач оптимизации. Условия экстремумов, теорема об эффективности последовательных методов и особенности задач нелинейного программирования. Сбалансированная и несбалансированная транспортные задачи.
шпаргалка, добавлен 11.09.2011Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.
курсовая работа, добавлен 04.12.2023Основной анализ построения алгоритма метода Гомори. Использование симплексной концепции при решении заданий. Особенность способа построения правильного отсечения без учета условия целочисленности. Характеристика решения задач линейного программирования.
доклад, добавлен 08.06.2015Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.
лекция, добавлен 06.09.2017Особенности решения задач по расчету процентных денег методом простых и сложных процентов. Линейное уравнение как простейший пример диофантова уравнения. Использование алгебраических уравнений и их систем, решение задач методом линейного программирования.
контрольная работа, добавлен 19.04.2015Понятие условного экстремума и способы его определения. Разработка алгоритма нахождения экстремума функции методом множителей Лагранжа. Применение данного метода при составлении плана выпуска изделий, обеспечивающего максимальную прибыль от их реализации.
курсовая работа, добавлен 20.10.2012Решение линейного уравнения Фоккера-Планка, его применение и особенности. Постановка вариационной задачи максимизации информационной энтропии по Клоду Шеннону. Анализ параметров решения уравнения методом моментов, сущность вариационного исчисления.
дипломная работа, добавлен 14.07.2016Особенности определения наличия у обрабатываемых деталей поверхностей сложного профиля. Обзор процесса программирования обработки поверхностей на станках с ЧПУ. Рассмотрение аппроксимации профиля по трем участкам. Оценка применения полиномов Лагранжа.
статья, добавлен 23.03.2018Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.
курсовая работа, добавлен 27.03.2011Изучение особенностей проектирования современных технических систем. Характеристика использования математического моделирования, программного обеспечения персональных компьютеров, математического программирования для решения оптимизационных задач.
курсовая работа, добавлен 22.11.2018- 88. Матричные игры
Графоаналитический метод решения матричных игр. Решение систем неравенств графическим методом и задач линейного программирования. Геометрическая интерпретация ограничений и целевой функции задачи. Решение матричных игр, используя симплекс метод.
контрольная работа, добавлен 23.01.2013 - 89. Численные методы
Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.
методичка, добавлен 26.09.2016 Общая и формальная постановка одношаговой задачи оптимального инвестирования в случае, когда разрешены "короткие продажи". Постановка многошаговой задачи оптимизации инвестиционного портфеля с дискретным временем как задачи динамического программирования.
курсовая работа, добавлен 05.08.2018Анализ вычислительной сложности задачи трехмерной упаковки в общей постановке, а также основные подходы к ее решению. Содержание задачи математического программирования по размещению ориентированных произвольных невыпуклых многогранников сложных форм.
статья, добавлен 30.05.2017Определение уравнения плоскости, проходящей через точку перпендикулярно вектору. Решение системы линейных уравнений по формулам Крамера, матричным способом и методом Гаусса. Решение задач линейного программирования модифицированным симплексным методом.
контрольная работа, добавлен 11.03.2012Расчет числа каналов для осуществления связи между двумя пунктами с заданным расстоянием. Поиск решения задачи по теореме равновесия. Решение двухкритериальной задачи линейного программирования методом идеальной точки. Решение уравнения искомой прямой.
контрольная работа, добавлен 13.10.2017Формальное содержание и принципы разрешения задачи размещения. Критерий минимума суммарной длины соединений и определение их длины. Типы используемых алгоритмов: конструктивные, итерационные, непрерывно-дискретные, математического программирования.
лекция, добавлен 12.06.2016Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.
контрольная работа, добавлен 10.01.2012Рассмотрение алгоритма решения задачи с дифференцируемой целевой функцией методом замены переменных и методом множителей Лагранжа. Определение особенностей постановки задачи условной минимизации с ограничениями-равенствами ограничениями-неравенствами.
презентация, добавлен 09.07.2015Математическое определение верхней и нижней цены игры в чистых стратегиях. Расчет цены игры при оптимальных смешанных стратегиях игроков при помощи нулевой суммы и платежной матрицы. Сведение оптимальных стратегий к задаче линейного программирования.
лекция, добавлен 20.03.2013Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.
контрольная работа, добавлен 17.01.2018Выражение для полного дифференциала. Необходимое условие первого порядка для существования локального максимума. Максимизация функции двух переменных при одном ограничении. Полный дифференциал функции. Интерпретация множителей Лагранжа. Матрица Якоби.
презентация, добавлен 21.08.2015Максимальное значение целевой функции. Линейное программирование графическим методом. Уравнение граничных прямых и построение их на плоскости. Базисные переменные системы ограничений. Определение результирующей таблицы. Область допустимых решений.
задача, добавлен 03.02.2014