Теория случайных процессов

Характеристика теории случайных процессов как науки, изучающей закономерности случайных явлений и динамики их развития. Особенности случайных функций, сечения, математического ожидания и реализации случайного процесса, его классификация и формулы.

Подобные документы

  • Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.

    презентация, добавлен 24.06.2014

  • Числовые характеристики случайных величин. Понятие и свойства математического ожидания и дисперсии. Равномерный закон распределения. Определение непрерывной случайной величины. Область определения функции. Графическое изображение вариационного ряда.

    доклад, добавлен 26.03.2012

  • Пример вычисления математического ожидания. Математическое ожидание функции дискретной случайной величины. Свойства и порядок вычисления дисперсии. Среднеквадратичное отклонение, коэффициент асимметрии и эксцесса, их значение и методика расчета.

    презентация, добавлен 26.09.2017

  • Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.

    курс лекций, добавлен 02.02.2012

  • Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.

    курсовая работа, добавлен 12.09.2014

  • Сущность, принципы закона распределения, его основные формы. Определение среднего значения (математического ожидания) случайной величины. Центральные моменты распределения случайной величины. Порядок расчета дисперсии и среднеквадратического отклонения.

    лекция, добавлен 26.09.2017

  • Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.

    учебное пособие, добавлен 08.12.2013

  • Понятие случайных событий и величин в математической статистике. Основные определения и формулы, отражающие механизм дискретного распределения чисел. Очерк правил решения алгебраических и геометрических примеров со случайными пороговыми значениями.

    учебное пособие, добавлен 13.01.2017

  • Характеристика основных положений теории вероятности. Анализ невозможных, возможных и достоверных событий в математике. Классическое определение закономерностей массовых случайных явлений. Сущность принципа разыскания геометрических возможностей.

    реферат, добавлен 17.03.2015

  • Математические методы моделирования экономических систем. Характеристика дискретного Марковского процесса. Описание дискретного времени, Марковских однородной, неоднородной, поглощающей цепей. Экономическое практическое применение теории Марковских цепей.

    контрольная работа, добавлен 23.12.2014

  • 3адача определения закона распределения случайной величины или системы случайных величин по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Применение однофакторного дисперсионного анализа.

    курсовая работа, добавлен 21.10.2017

  • А.Н. Колмогоров как один из создателей теории случайных процессов. История появления концепции случайности как алгоритмической сложности. Марковские цепи, их открытие и главные особенности применения. Вклад Готфрида Лейбница в развитие математики.

    доклад, добавлен 10.01.2012

  • Формулы комбинаторики и вероятность. Классическое определение вероятности. Непрерывные и дискретные случайные величины. Закон распределения случайных дискретных величин, их числовые характеристики. Статистические методы обработки экспериментальных данных.

    учебное пособие, добавлен 29.09.2017

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.

    лекция, добавлен 18.03.2014

  • Разработка методов сбора, описания и анализа экспериментальных результатов наблюдений, массовых случайных явлений. Способы задания класса вероятностей и представления выборки. Запись эмпирической функции распределения. Построение вариационного ряда.

    презентация, добавлен 21.09.2017

  • Математическое описание динамических функций. Определение взаимосвязей входного и выходного сигнала системы через нахождение оператора. Приближенное описание случайных процессов. Задачи статистической обработки информации. Понятие об объекте измерения.

    учебное пособие, добавлен 28.12.2013

  • Смысл математического ожидания и дисперсии в случае дискретных случайных величин. Вид формул для их нахождения путем замены. Функция распределения непрерывной случайной величины. Расчет плотности вероятности, а также вероятности попадания на участок.

    презентация, добавлен 01.11.2013

  • Рассмотрение теоремы умножения вероятностей. Характеристика основных задач математической статистики. Выборка как набор объектов, случайно отобранных из генеральной совокупности, виды: повторная, бесповторная. Особенности непрерывных случайных величин.

    дипломная работа, добавлен 07.12.2012

  • Изучение случайных явлений, статистическая обработка результатов численных заданий. Решение задач, связанных с теорией вероятности. Способы вычисления наступления предполагаемого события. Вероятность попадания случайной величины в заданный интервал.

    контрольная работа, добавлен 18.12.2013

  • Рассмотрение интересных закономерностей в возникновении случайного события. Изучение теорем сложения вероятностей. Как работает закон равномерной плотности вероятности. Приведение примеров случайных величин. Обоснование функции распределения, ее свойства.

    реферат, добавлен 04.02.2010

  • Возникновение понятия и основное положение теории вероятности. Случайное событие и примеры разно возможных событий. Абстракция событий и определение случайной величины. Закон распределения вероятности дискретных и непрерывных случайных величин.

    контрольная работа, добавлен 12.12.2012

  • Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.

    реферат, добавлен 25.02.2011

  • 3адача определения закона распределения случайной величины (или системы случайных величин) по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Задача нахождения неизвестных параметров распределения.

    курсовая работа, добавлен 21.10.2017

  • Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.

    курс лекций, добавлен 20.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.