Дополнительные главы математической физики

Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.

Подобные документы

  • Равносильные уравнения, их следствия. Методы решения уравнений, тождественные преобразования над выражениями, входящими в уравнение. Правила преобразования уравнений. Алгоритм метода интервалов, примеры решения. Числовые неравенства, основные свойства.

    реферат, добавлен 22.12.2011

  • Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.

    научная работа, добавлен 18.10.2010

  • Рассмотрение центральной предельной теоремы. Характеристика неравенства Чебышева, изучение его доказательства. Определение особенностей закона больших чисел в форме Чебышева. Выявление значения теоремы Бернулли, Пуассона. Формулировка неравенства Маркова.

    реферат, добавлен 12.11.2015

  • Получение алгоритма решения обратной задачи для оператора Штурма-Лиувилля, определяемого уравнением и краевыми условиями. Доказательство теоремы о существовании и асимптотическом поведении собственных значений. Построение операторов преобразования.

    курсовая работа, добавлен 10.11.2017

  • Критерии непрерывности зависимости решений обыкновенного дифференциального уравнения, уравнения в частных производных. Нахождение приближенного решения краевых задач с оценкой погрешности. Математическая модель для решения задач механики сплошных сред.

    автореферат, добавлен 02.03.2018

  • Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

    лекция, добавлен 21.03.2018

  • Решение всякой количественной математической задачи и нахождение "решения" y по заданным исходным данным. Задача решения уравнения Фредгольма первого рода. Устойчивость эквивалентна непрерывности обратного оператора. Нормы всех членов последовательности.

    реферат, добавлен 09.11.2017

  • Элементы косого четырехугольника и их свойства. Классические теоремы о замечательных точках косого четырехугольника. Зависимость между углами, сторонами и диагоналями косого четырехугольника. Основные признаки, свойства и теоремы косого параллелограмма.

    дипломная работа, добавлен 08.03.2013

  • Особенность обобщения теоремы о вложении Харди-Литтлвуда для некоторых классов функций, интегрируемых с весом на отрезке. Применение для внутреннего интеграла неравенства Гельдера. Введение средних непрерывных из-за непрерывности интегрирования Лебега.

    статья, добавлен 30.10.2016

  • Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.

    научная работа, добавлен 01.02.2013

  • Описание разновидностей потенциалов, свойств потенциалов простого и двойного слоя. Постановка и решение краевых задач для уравнений Лапласа и Пуассона в пространстве, их сведение к интегральным уравнениям. Нахождение объемного потенциала однородного шара.

    курсовая работа, добавлен 18.12.2016

  • Анализ пространства как трехмерного континуума. Возможность четырехмерной трактовки "мира". Оценка пространства Минковского как четырёхмерного псевдоевклидового пространства сигнатуры, предложенного в геометрической интерпретации пространства-времени.

    реферат, добавлен 15.05.2016

  • Топологические и геометрические свойства графов. Теорема Штейница. Хроматический многочлен. Топология подмножеств евклидова пространства. Расстояние от точки до множества. Теоремы Лебега о покрытиях. Кривые на плоскости. Паракомпактные пространства.

    книга, добавлен 28.12.2013

  • Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.

    презентация, добавлен 07.05.2014

  • Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.

    шпаргалка, добавлен 02.02.2016

  • Формулы теории матриц для систем обыкновенных дифференциальных уравнений. Формулы построчного ортонормирования переносимых матричных уравнений краевых условий жестких краевых задач. Вариант расчета вектора частного решения систем неоднородных ОДУ.

    контрольная работа, добавлен 17.07.2016

  • Основные черты задачи Дирихле для уравнения Пуассона и необходимость применения сеточной функции. Сущность Чебышевского метода, его обоснование и применение на практике. Характеристика основных задач метода простой итерации при заданном числе узлов.

    презентация, добавлен 30.10.2013

  • Основные направления модернизации математического образования. Недостаточность рассмотренных оригинальных способов решения задач с параметрами. Основные понятия и термины. Основные типы задач с параметрами. Линейные, квадратные и иррациональные уравнения.

    курсовая работа, добавлен 09.12.2012

  • Описание результатов решения начальных и краевых задач с учетом неустранимой погрешности. Характеристика круга решаемых задач и преимуществ предложенных методов. Анализ значения учета погрешностей для решения задач повышения надежности устройств.

    статья, добавлен 24.07.2018

  • Основные дифференциальные уравнения дистилляции, локальные топологические свойства. Анализ корней характеристической задачи. Линейные системы дифференциальных уравнений и их решение. Нелокальные закономерности диаграмм фазового равновесия жидкость-пар.

    автореферат, добавлен 26.03.2014

  • Классификация и основные типы линейных интегральных уравнений. Решение уравнения Вольтерра и Фредгольма. Свойства характеристических чисел и собственных функций самосопряженного интегрального уравнения. Билинейное разложение для самосопряженных ядер.

    курс лекций, добавлен 08.11.2012

  • Определение функции нескольких переменных. Дифференциальные уравнения первого и высших порядков. Основные теоремы операционного исчисления (преобразования Лапласа). Числовые и знакоположительные ряды. Разложение в ряд Фурье четных и нечетных функций.

    курс лекций, добавлен 18.02.2012

  • Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.

    курсовая работа, добавлен 08.10.2013

  • Расчет формулы преобразования Лапласа для алгебраизации дифференциальных уравнений, ее свойства: линейность, дифференцирование оригинала, свертка, запаздывание, сдвиг и масштабирование. Расчет функций Хевисайда и Дирака и применение теоремы о вычетах.

    презентация, добавлен 20.02.2014

  • Источники и классификация погрешности. Прямые и итерационные методы решения систем линейных алгебраических уравнений. Вычисление собственных значений и собственных векторов матриц. Методы решения полной и частичной проблемы собственных значений.

    учебное пособие, добавлен 15.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.