Локальный экстремум функций многих переменных

Направления исследования функций многих переменных на безусловный экстремум, а также на условный экстремум. Методика определения координат точек функций, дифференцирование уравнений. Формирование, анализ и оценка соотношений математической связи.

Подобные документы

  • Вычисление значения функции в точках, подозрительных на глобальный экстремум. Нахождение наклонной асимптоты, точек, в которых производная функции равна нулю. Определение промежутков выпуклости и точек перегиба функции. Построение эскиза графика функции.

    контрольная работа, добавлен 26.04.2012

  • Определение и характеристика производной функции в направлении вектора. Ознакомление с результатами исследования функции на экстремум. Расчет и анализ дискриминанта уравнения и интеграла. Вычисление площади фигуры, ограниченной прямой и параболой.

    контрольная работа, добавлен 28.01.2017

  • Особенности исследования нелинейной функции одной переменной. Рассмотрение основных операций с матрицами. Решение системы линейных уравнений. Изучение приближения таблично заданной функции. Способы определения экстремума функции двух переменных.

    курсовая работа, добавлен 19.05.2015

  • Определения дифференцирования в линейных пространствах. Связь производных Фреше и Гато. Необходимое условие экстремума функции, формула конечных приращений и приложения. Понятия теории множеств, формула конечных приращений и следствие теоремы Лагранжа.

    курсовая работа, добавлен 25.04.2014

  • Анализ функции на экстремум. Частные производные первого и второго порядка. Разложение Тейлора до квадратичного члена включительно в окрестности двух точек. Проверка аналитических преобразований. Ряд Тейлора в матричной форме. Выражение вектор-градиента.

    контрольная работа, добавлен 22.01.2013

  • Геометрический смысл производной. Определение значения производной для функции и отложение их на оси. Графическое дифференцирование. Признаки существования локальных экстремумов и точек перегиба. Графическая иллюстрация. Недифференцируемая точка функции.

    контрольная работа, добавлен 27.08.2011

  • Общая характеристика частных производных и частных дифференциалов функций со многими переменными. Геометрический смысл частных производных и полного дифференциала. Основные правила вычисления дифференциалов и понятие частных производных высших порядков.

    курсовая работа, добавлен 23.04.2011

  • Частные производные функции нескольких переменных. Градиент функции, касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных. Метод множителей Лагранжа. Решение задач нелинейного программирования с двумя переменными.

    учебное пособие, добавлен 17.04.2013

  • Определение дифференциала функции, его геометрический смысл и параметры. Инвариантность формы дифференциала, его применение в приближенных вычислениях. Локальный экстремум, теоремы Ферма, Ролля, Лагранжа и Коши, их сущность, доказательства и применение.

    лекция, добавлен 07.07.2015

  • Решение уравнения и построение его на комплексной плоскости. Определение точек разрыва функции и указание характера точек разрыва. Нахождение производных функций. Расчет экстремумов функции с использованием второй производной. Разложение функции в ряд.

    контрольная работа, добавлен 22.04.2018

  • Проведение операции нахождения производной. Исследование таблицы формул дифференцирования. Определение интервалов монотонности и экстремумов. Основная характеристика изучения интервалов выпуклости, вогнутости, а также точек перегиба графика функции.

    курсовая работа, добавлен 03.10.2022

  • Определение экстремумов, точек перегиба и асимптот функции, использование команды polyroots. Исследование функции одной, двух переменных. Вычисление неопределенного постоянного множителя, Координаты стационарных точек. Применение функции CreateMesh.

    контрольная работа, добавлен 10.04.2020

  • Метод гиперплоскостей для построения выпуклой области. Решение нелинейных уравнений на основе минимизации функций многих переменных. Сокращение интервала неопределенности методами золотого сечения, квадратичной аппроксимации и Давидона-Флетчера-Пауэлла.

    реферат, добавлен 14.02.2011

  • Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.

    лекция, добавлен 29.09.2013

  • Особенности свойств градиента, которые лежат в основе ряда итерационных методов минимизации функций. Сущность градиентного метода. Сходимость метода скорейшего спуска. Проблема отсутствия надежных критериев окончания счета с требуемой точностью.

    лекция, добавлен 06.09.2017

  • Определение функции и графика функции. Область определения и область значений функции, ее нули и экстремумы. Общая схема исследования функций: признаки возрастания и убывания, критические точки. Место и роль математики в менеджменте и экономике.

    реферат, добавлен 23.04.2011

  • Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.

    реферат, добавлен 10.04.2010

  • Описание построения некоторых функциональных пространств дифференцируемых функций многих переменных и построенных весовых пространств. Построение усредняющей функции и основного тождества. Нахождение вектора с целыми неотрицательными координатами.

    статья, добавлен 21.06.2018

  • Разработка и обоснование новых и эффективных методов глобальной минимизации некоторых специальных классов негладких функций на выпуклых множествах. Разработка метода нахождения минимума негладкой выпуклой функции многих переменных на симплексе.

    автореферат, добавлен 30.06.2018

  • Основные понятия векторной алгебры, примеры решения задач. Вычисление производных тригонометрических функций. Нахождение точек экстремума, минимума и максимума функции, построение ее графика. Определение площади фигуры при помощи интегрирования.

    контрольная работа, добавлен 04.11.2012

  • Рассмотрение основных свойств функций алгебры логики. Базис и основные законы булевых функций. Реализация сочетательного закона при использовании логической функции И для трех переменных. Конъюнктивная и дизъюнктивная формы закона поглощения переменных.

    лекция, добавлен 15.11.2017

  • Методологические принципы и алгоритмы оптимизации в ракурсе инженерного подхода. Модели задач оптимизации. Методы классического математического анализа исследования функций. Экстремумы функции одной и многих переменных. Метод множителей Лагранжа.

    контрольная работа, добавлен 20.01.2015

  • Исследование поведения функций одной переменной, построение графиков. Изучение порядка математических действий по отысканию локального экстремума. Поиск наибольших и наименьших значений непрерывной на отрезке функции. Точки пересечения с осями координат.

    лекция, добавлен 26.01.2014

  • Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.

    статья, добавлен 27.06.2016

  • Рассмотрение примеров дифференциального исчисления функций одного переменного. Исследование на монотонность, определение асимптот и экстремумов. Проведение полного исследования свойств и построение эскиза графика функции. Исследование функции Лагранжа.

    контрольная работа, добавлен 18.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.