Векторная алгебра

Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.

Подобные документы

  • Понятие направления. Свойства операции сложения векторов. Умножение вектора на число. Линейная зависимость векторов. Координаты вектора. Скалярное произведение векторов. Векторное произведение двух векторов. Смешанное произведение трех векторов.

    методичка, добавлен 17.05.2012

  • Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.

    презентация, добавлен 23.10.2020

  • Сущность понятий скалярной и векторной математических величин. Основные свойства операций с векторами. Разложение векторов по ортам. Определение проекции вектора и их свойства. Действия с векторами в координатной форме при условие коллинеарности.

    презентация, добавлен 03.10.2012

  • Признак коллинеарности векторов, их абсолютная длинна и скалярное произведение. Сумма векторов, правило треугольника, параллелограмма, многоугольника, параллелепипеда Смешанные произведения в координатах. Проекции вектора на ось. Координатные формулы.

    реферат, добавлен 28.02.2011

  • Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.

    лекция, добавлен 26.01.2014

  • Скалярное произведение двух векторов и его свойства. Свойства операций над векторами. Теоремы об операциях над векторами, заданными в координатной форме. Правило сложения векторов. Свойства скалярного произведения. Определение равенства векторов.

    контрольная работа, добавлен 16.06.2010

  • Скалярное произведение векторов: определение. Характеристика векторного произведения векторов, его свойства (антиперестановочность множителей, распределительности относительно сложения и пр.). Определение смешанного произведения векторов, примеры задач.

    лекция, добавлен 09.07.2015

  • Понятие и классификация векторов. Действия и линейные операции над векторами, их умножение на число и на матрицу. Скалярное, векторное, смешанное произведение векторов и их свойства (перестановки, распределения, сочетания, ортогональности, квадрата).

    реферат, добавлен 07.09.2012

  • Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.

    презентация, добавлен 21.09.2013

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.

    презентация, добавлен 21.09.2013

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.

    лекция, добавлен 30.11.2010

  • Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.

    лекция, добавлен 29.09.2013

  • Характеристика вектора, как семейства параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков. Сложение и равенство векторов, свойства операций над ними, скалярное произведение двух векторов. Доказательства и решения задач.

    контрольная работа, добавлен 26.10.2009

  • Расстояние между точками. Середина отрезка, центр тяжести многоугольника. Задача деления заданного отрезка в любом заданном отношении. Расстояния между точками на окружности. Скалярное произведение векторов. Длина векторного произведения векторов.

    контрольная работа, добавлен 05.12.2018

  • Аксиомы линейного пространства. Операции сложения и умножения элемента на число. Линейная комбинация векторов с коэффициентами. Определение координат вектора относительно базиса. Разложение элемента по базису. Понятие линейной векторной зависимости.

    лекция, добавлен 29.09.2013

  • Определение и геометрический смысл смешанного произведения векторов. Формулирование необходимого и достаточного условия их компланарности. Рассмотрение уравнений линии на плоскости и прямой с угловым коэффициентом, векторного и канонического уравнений.

    лекция, добавлен 26.01.2014

  • Особенность выполнения различных операций с матрицами. Исследование скалярного и векторного произведения векторов. Применение матричных функций для решения задач линейной алгебры в MathCAD. Анализ однородных и неоднородных систем линейных уравнений.

    презентация, добавлен 08.04.2018

  • Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.

    методичка, добавлен 19.09.2015

  • Матрицы, определители, системы линейных уравнений. Элементарные преобразования матриц, ранг матрицы. Матричная запись системы линейных уравнений и ее матричное решение. Элементы векторной алгебры и аналитической геометрии. Смешанное произведение векторов.

    учебное пособие, добавлен 25.11.2012

  • Линейные операции над векторами. Действия над математическими величинами, заданными своими координатами. Свойства скалярного и смешанного произведения векторов. Определение векторного произведения одноименных и разноименных ортов. Признак компланарности.

    курс лекций, добавлен 10.11.2013

  • Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.

    презентация, добавлен 28.09.2017

  • Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.

    реферат, добавлен 20.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.