Размещение центров на многовзвешенных предфрактальных графах

Оценка радиального критерия предфрактального графа, порожденного затравкой-звездой. Создание полиномиального алгоритма размещения центра абстрактного математического объекта, при сохранении смежности старых ребер. Анализ вычислительной сложности системы.

Подобные документы

  • Понятие и сущность изоморфизма графов, их машинное представление. Характеристика и специфика матрицы смежности и инцинденций, специфика массива ребер. Пошаговая проверка на изоморфизм двух графов вручную. Реализация программы на языке программирования.

    курсовая работа, добавлен 30.03.2015

  • Представление структуры объекта в виде множеств. Исследование отношений на рефлексивность, транзитивность, симметричность. Определение логических взаимосвязей между множествами объекта. Представление структуры управления в виде графов, матрицы смежности.

    курсовая работа, добавлен 07.06.2010

  • История возникновения теории графов и способы их представления в информатике. Определение понятия матрицы смежности и инцидентности. Маршрут как последовательность ребер, в которых каждые два соседних ребра имеют общую вершину. Гамильтонов и Эйлеров цикл.

    презентация, добавлен 28.02.2012

  • Оценка математического ожидания, дисперсии, среднего квадратического отклонения, коэффициента корреляции случайных величин. Построение регрессионной модели и интервальная оценка. Нахождение доверительного интервала для условного математического ожидания.

    курсовая работа, добавлен 29.04.2015

  • Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.

    контрольная работа, добавлен 29.08.2010

  • Елементи теорії графів. Цикломатичне число і фундаментальні цикли. Незалежні безлічі і покриття. Задача знаходження мінімального шляху в графах: алгоритм Дейкстра. Графічне зображення початкового графа і дерева мінімальних шляхів після виконання програми.

    курсовая работа, добавлен 21.11.2017

  • Анализ изменения поведения системы с помощью графа состояний. Решение системы дифференциальных уравнений Колмогорова-Чепмена. Расчет финальных вероятностей состояний системы и влияния интенсивностей восстановления элементов на ее работоспособность.

    лабораторная работа, добавлен 20.05.2015

  • Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.

    курсовая работа, добавлен 14.01.2016

  • Формальное содержание и принципы разрешения задачи размещения. Критерий минимума суммарной длины соединений и определение их длины. Типы используемых алгоритмов: конструктивные, итерационные, непрерывно-дискретные, математического программирования.

    лекция, добавлен 12.06.2016

  • Определение размаха варьирования уровня моря. Расчет числа и величины разрядов выборки. Подсчет частот по интервалам. Составление ряда распределения. Построение полигона и гистограммы. Оценка математического ожидания, дисперсии. Проверка критерия Пирсона.

    курсовая работа, добавлен 18.10.2017

  • Определение приемов структуризации информации о способах физико-химической переработки жидких, газовых и твердых сред в аппаратах химической технологии. Создание удобного математического аппарата для формализации способов физико-химической переработки.

    автореферат, добавлен 14.12.2017

  • Оценка математического ожидания, дисперсии и среднеквадратического отклонения случайной величины x. Гипотеза о законе распределения случайной величины x, ее проверка по критерию Пирсона. Доверительные интервалы для математического ожидания и дисперсии.

    контрольная работа, добавлен 06.05.2014

  • Анализ данных с помощью определения структуры кластера. Изучение алгоритма поиска центра Минковского для кластеризации по методу к-средних для различных значений степени. Постановка задачи кластеризации. Описание алгоритма с использованием метрики.

    дипломная работа, добавлен 01.12.2019

  • Ознакомление с формульным выражением симметричной квадратной матрицы. Определение свойств матриц смежности и инцидентности. Расчеты ориентированного мультиграфа при нулевой, либо линейной комбинации строк. Обзор теоремы ориентированного псевдографа.

    лекция, добавлен 18.10.2013

  • Факторы, влияющие на развитие математического образования во второй половине XVIII века. Социально-экономические условия, сложившиеся в России к середине XVII века. Реформы Петра I. Создание школьной системы математического образования. Леонард Эйлер.

    курсовая работа, добавлен 28.03.2016

  • Задача об остовных деревьях с топологическими критериями и интервальными весами. Этапы поиска наилучшего решения интервальной задачи. Численные значения множества допустимых решений и интервальной целевой функции. Формулы для реализации весов ребер графа.

    статья, добавлен 22.05.2017

  • Численные методы решения математических задач. Прямое статистическое моделирование при помощи получения и преобразования случайных чисел. Применение метода Монте-Карло в вычислительной аэродинамике. Разработка алгоритма для кинетических уравнений.

    статья, добавлен 13.12.2013

  • Анализ поведения объекта управления под действием системы факторов. Выявление зависимостей между структурой себестоимости и объемами производства продукции. Выполнение когнитивной структуризации и формализации. Построение матрицы абсолютных частот.

    статья, добавлен 26.04.2017

  • Методика определения хроматического числа неориентированного графа. Пример графа для иллюстрации логики нахождения правильной раскраски. Характеристика метода нахождения пути минимального окрашивания, который основан на решении задачи о покрытии.

    презентация, добавлен 25.09.2017

  • Типы математиков: интуитивисты и формалисты. Классификация стилей ученых по линии противопоставления. Стили мышления Д. Гильберта и Э.Я. Брауэра. Проблема непрерывности и полноты, существования математического объекта, природы мышления, единства мира.

    реферат, добавлен 04.09.2010

  • Определение и направления исследования алгебры путей на связных графах. Описание их свойств и центральных элементов тел, частных для случая, когда граф является полным неориентированным графом без петель. Формулирование теорем и их доказательство.

    статья, добавлен 31.05.2013

  • Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.

    контрольная работа, добавлен 27.03.2012

  • Алгоритмы динамического программирования в теории графов. Основы теории графов. Сравнение алгоритмов Дейкстры и Беллмана-Форда. Реализация алгоритма Беллмана-Форда в задаче поиска наикратчайшего пути в графе. Иллюстрация алгоритма на примере графа.

    курсовая работа, добавлен 04.12.2023

  • Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.

    методичка, добавлен 24.03.2015

  • Рассмотрение многомерных фигур, от одномерного отрезка до шестимерного хексеракта. Анализ топологических характеристик многомерных фигур и закономерностей. Формула нахождения количества ребер фигуры, ее сравнение с теоремой Эйлера для многогранников.

    статья, добавлен 03.08.2021

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.