Показательная функция, уравнения, неравенства

Описание основных методов решения показательных уравнений. Предупреждение появления типичных ошибок в записи функции, подготовка к контрольной работе. Активизация работы класса через воспитание воли и настойчивости для достижения конечных результатов.

Подобные документы

  • Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.

    учебное пособие, добавлен 05.03.2010

  • Производная как мгновенная скорость. Правила дифференцирования, показательная и логарифмическая функции. Восстановление пути скорости. Геометрический смысл интеграла и его применение для вычисления площадей и объемов. Задача о трении намотанного каната.

    учебное пособие, добавлен 25.11.2013

  • Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.

    статья, добавлен 27.05.2018

  • Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.

    контрольная работа, добавлен 14.12.2014

  • Методика преподавания тождественных преобразований в школьном курсе математики. Показательная и логарифмическая функции, их основные свойства, используемые при тождественных преобразованиях. Решение задач с использованием тождественных преобразований.

    курсовая работа, добавлен 09.09.2012

  • Дифференциальные уравнения второго порядка с постоянными коэффициентами. Вычисление значения неопределенных коэффициентов. Решение системы из трех уравнений. Три случая решения характеристического уравнения и общее решение однородного уравнения.

    учебное пособие, добавлен 05.05.2015

  • Методы решения уравнений в частных производных, а также анализ полученных результатов, используемые основные понятия и методы. Параметры разностных схем, их структура и назначение. Вариационный принцип Лагранжа и Гамильтона, их сравнительное описание.

    контрольная работа, добавлен 31.10.2014

  • Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.

    курсовая работа, добавлен 07.11.2020

  • Особенности решения иррациональных уравнений и неравенств стандартного типа и повышенной сложности. Исторические аспекты изучения данного вопроса. Возведение обоих частей уравнений в соответствующую натуральную степень. Введение новых переменных.

    реферат, добавлен 14.04.2010

  • Теория делимости чисел как инструмент решения задач. Нахождение целочисленных решений алгебраических уравнений с тремя неизвестными (диофантовый анализ). Попытки найти решение нелинейного диофантова уравнения или доказать невозможность такого решения.

    реферат, добавлен 28.06.2009

  • Метод сеток решения уравнений параболического типа, оценка погрешности и сходимость метода сеток. Прогонка решения разностной задачи. Доказательство устойчивости разностной схемы. Разработка программного модуля, описание логики. Пример работы программы.

    курсовая работа, добавлен 25.11.2011

  • Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.

    курсовая работа, добавлен 10.02.2019

  • Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.

    презентация, добавлен 21.09.2013

  • Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.

    контрольная работа, добавлен 02.12.2012

  • Алгоритм нахождения интегральных кривых однородных уравнений первого порядка. Исследование интегральных кривых уравнения. Описание решения ряда задач, характеризующих свойства однородных дифференциальных уравнений. Методы построения интегральных кривых.

    дипломная работа, добавлен 21.04.2023

  • Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.

    контрольная работа, добавлен 16.04.2010

  • Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.

    статья, добавлен 27.11.2018

  • Определение степенной функции y = a(x в степени m), где а и m - постоянные величины. Ход урока: повторение свойств степеней, определение понятий. Построение графиков параболы и гиперболы. Решение уравнений и неравенств. Сравнительный анализ результатов.

    презентация, добавлен 03.03.2012

  • Понятие и отличительные особенности показательных уравнений и неравенств как такой разновидности математических категорий, в которых неизвестное содержится в показателе степени. Сущность и основные характеристики, свойства алгоритмов и операции над ними.

    реферат, добавлен 24.11.2016

  • Сравнение методов одномерной безусловной оптимизации. Алгоритм пассивного поиска минимума. Анализ методов поиска, основанных на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.

    дипломная работа, добавлен 24.05.2018

  • Основные численные методы решения краевой задачи: метод стрельбы, конечно-разностный метод. Примеры задач и их реализация в среде MathCad. Сравнение результатов вычислений. Пример решения нелинейного ОДУ (обыкновенного дифференциального уравнения).

    курсовая работа, добавлен 05.06.2015

  • Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.

    курсовая работа, добавлен 13.12.2016

  • Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.

    дипломная работа, добавлен 27.02.2020

  • Дифференциальные уравнения и их применение в прикладных задачах. Математическая модель численного интегрирования дифференциальных уравнений. Математическое описание зависимости концентрации. Расчет профиля температур при нестационарной теплопроводности.

    дипломная работа, добавлен 19.06.2015

  • Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.

    статья, добавлен 31.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.