Финансовая математика
Виды простых ставок. Формула наращения сложных процентов. Формула наращения по простой процентной ставке. Математическое дисконтирование и сложные проценты. Сравнение роста по сложной и простой процентной ставке. Определение переменных процентных ставок.
Подобные документы
Рассмотрение интегральных формул для уравнений эллиптического типа первого порядка с постоянными коэффициентами, факторизуемыми оператором Гельмгольца в неограниченной области. Доказательство справедливости интегральной формулы в неограниченной области.
статья, добавлен 22.01.2018Обоснование непрерывность элементарных функций для точки, у которой малые изменения аргумента приводят к малым изменениям математического значения. Анализ формулы гиперболических значений. Обзор сложной и обратной функций, а так же точек их разрыва.
лекция, добавлен 29.09.2013Повторения Бернулли как повторные независимые испытания, этапы их реализации и предъявляемые требования, изучение примеров. Формула Пуассона, ее выведение. Понятие и содержание случайной величины. Числовые характеристики дискретной случайной величины.
контрольная работа, добавлен 20.02.2011- 104. Теория вероятностей
Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.
контрольная работа, добавлен 27.11.2017 Оптимізація формул наближеного інтегрування. Розрахунок "інтервальної" формули з довільними та фіксованими вузлами, оптимальний алгоритм наближеного відновлення інтегралу, що має обмеження на градієнт. Кубатурна формула центрів вузлових паралелепіпедів.
автореферат, добавлен 27.07.2014Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.
учебное пособие, добавлен 23.02.2011Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.
шпаргалка, добавлен 25.01.2016Построение и анализ многочлена Тейлора. Примеры разложения функции по формуле Маклорена. Степенной порядок малости. Определение степени роста бесконечно большой величины в окрестности точки разрыва. Расчёт асимптоты графика функции на бесконечности.
презентация, добавлен 26.09.2017Математическая формула для подъемной силы, действующей на единицу длины крыла самолета. Специфические особенности применения системы обыкновенных дифференциальных уравнений первого порядка для определения траектории движения летательных аппаратов.
статья, добавлен 17.11.2021Скалярные и векторные поля. Циркуляция векторного поля вдоль кривой. Формула Гаусса-Остроградского, дивергенция. Формула Стокса, ротор векторного поля. Потенциальное поле и его свойства. Соленоидальное поле и его свойства. Расчет векторного потенциала.
курсовая работа, добавлен 24.03.2009Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).
презентация, добавлен 21.03.2014Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.
статья, добавлен 11.07.2015- 113. Формальные системы
Совокупность абстрактных объектов, в которой представлены правила оперирования множеством символов в синтаксической трактовке. Правила, применяемые к формулам. Классическая классификация формальных грамматик. Моделирование сложных ветвящихся процессов.
реферат, добавлен 06.11.2011 Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.
учебное пособие, добавлен 26.03.2014Понятие дифференциала функции как суммы произведений частных производных этой функции на приращения соответствующих независимых переменных. Особенности и суть условия дифференцируемости функции нескольких переменных и его математическое представление.
презентация, добавлен 17.09.2013- 116. Виды прогрессий
Формула, описывающая представленный ряд чисел. Расписание боевой трапеции в вертикальном исполнении. Сомножители, представляющие из себя арифметическую прогрессию. Нахождение формулы для суммы членов определенного ряда. Определение ряда факториалов.
статья, добавлен 30.03.2017 - 117. Приближение переменных динамических объектов управления на основе полиномиальных сплайн-функций
Основные аппроксиманты, которые используются при решении задач приближенного представления функций. Анализ особенностей применения интерполяционных сплайнов при численном дифференцировании. Формула численного интегрирования для кубического сплайна.
статья, добавлен 27.06.2016 - 118. История числа Пи
Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.
презентация, добавлен 14.02.2016 Развитие у учащихся абстрактного мышления. Тема "Многогранники" в курсе школьной геометрии как центральный предмет стереометрии. Исторические сведения о правильных многогранниках, их проявление в природе. Греческая математика Платона, формула Эйлера.
реферат, добавлен 26.03.2010Характеристика трех наиболее употребительных приближенных способов вычисления определенных интегралов в математике: методов прямоугольников, трапеций, парабол. Использование определенных формул для расчета их по числу значений подынтегральной функции.
реферат, добавлен 02.09.2013Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Особенности присутствия математики во всех отраслях нашей жизни. Математическое моделирование в архитектуре. Современный характер применения уже созданных математических теорий к техническим проблемам. Математика в физике и астрономии, химии и биологии.
презентация, добавлен 18.05.2016Построение двойственного образа SH–распределения. Формула оснащения Э. Бортолотти в математики. Изучение основных индексов SH-распределений. Двойственные связности на гиперполосах специальных классов. Геометрия регулярного гиперполосного распределения.
статья, добавлен 15.05.2016- 124. Задача Бюффона
Биография Жоржа Луи Бюффона как французского натуралиста, биолога, математика, естествоиспытателя и писателя, обзор его знаменитых трудов. Опыт Бюффона. Особенности доказательства формулы, лежащей в основе теоретического фундамента метода Монте-Карло.
реферат, добавлен 27.04.2022 Решение системы дифференциальных уравнений 8-го порядка. Случай переменных коэффициентов. Формула для вычисления вектора частного решения. Перенос краевых условий в произвольную точку интервала интегрирования. Счет методом прогонки С.К. Годунова.
курсовая работа, добавлен 25.03.2010