Разработка эффективных методов расчета тонкостенных конструкций с учетом пластических и демпфирующих свойств материала
Разработка методов и алгоритмов решения физически нелинейных задач статики и динамики тонкостенных конструкций. Решение обратных задач, обеспечивающих требуемые пластические и демпфирующие свойства конструкции и механические характеристики материала.
Подобные документы
Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений. Программа на С++ расчета цилиндрической и сферической оболочки. Формула для начала счета методом прогонки С.К. Годунова. Программа на С++ расчета цилиндра.
диссертация, добавлен 04.03.2013Построение математических моделей физических процессов и явлений. Применение вариационных методов для решения задач со свободными границами. Разработка численного алгоритма решения для двумерной задачи с неизвестной границей в прямоугольной области.
статья, добавлен 30.05.2017Основные сведения о системах нелинейных уравнений. Понятие о линеаризованных уравнениях. Определение малой окрестности и выбор в ней начального приближения к решению. Методы простой итерации, Зейделя, Ньютона, наискорейшего спуска. Сходимость методов.
реферат, добавлен 14.12.2010Решение нелинейных уравнений с одной переменной с использованием численных методов: метода итерации и комбинированного метода. Отделение корней заданного уравнения графическим методом, их уточнение численными методами. Расчет количества итераций.
контрольная работа, добавлен 14.12.2014Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.
курсовая работа, добавлен 12.02.2013Случай переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Решение задач методами краевых условий, прогонки С.К. Годунова, половины констант. Применяемые формулы построчного ортонормирования.
научная работа, добавлен 18.10.2010Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.
курсовая работа, добавлен 17.04.2014Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
статья, добавлен 22.05.2017Выявление методов нахождения площадей плоских фигур в зависимости от заданных условий. Выделение типологии задач на нахождение площадей и обоснование применения метода решения к ним. Разработка задачи прикладного характера и выполнение их решения.
курсовая работа, добавлен 19.09.2018Подбор задач с параметром, решаемые с помощью аналитического и графического методами. Решение сложных и нестандартных задач по математике. Решение различных задач, позволяющее с помощью математических преобразований упростить выражение и найти ответ.
курсовая работа, добавлен 02.06.2018Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.
контрольная работа, добавлен 20.12.2013Изучение особенностей графического и симплексного методов решения задач линейного программирования. Геометрическая интерпретация ограничений. Нахождение максимального значения целевой функции задачи. Определение и построение области допустимых решений.
контрольная работа, добавлен 26.05.2015Формулировка и математическая модель транспортной задачи. Необходимое и достаточное условия разрешимости транспортной задачи. Методы построения начального опорного решения задачи. Алгоритм и особенности решения транспортных задач с неправильным балансом.
контрольная работа, добавлен 19.10.2011Методика представления решения, которое удовлетворяет граничным условиям в виде тригонометрического ряда. Выбор шага интегрирования по временной переменной - один из методов обеспечения устойчивости алгоритма решения системы нелинейных уравнений.
статья, добавлен 03.03.2018Рассмотрение и характеристика сущности и основных видов текстовых задач. Решение текстовых задач методом составления уравнений. Изучение нестандартных задач в школьном курсе математики. Ознакомление с методикой обучения решения "аномальных" задач.
дипломная работа, добавлен 18.07.2014Сравнение методов одномерной безусловной оптимизации. Алгоритм пассивного поиска минимума. Анализ методов поиска, основанных на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
дипломная работа, добавлен 24.05.2018Способы построения геометрических фигур с помощью циркуля и линейки. Схема решения задач с применением методов пересечения, подобия, методов инверсии, движения. Решение задачи построения фигур при помощи одной линейки, линейки и угольника, одного циркуля.
курс лекций, добавлен 29.01.2013Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
курсовая работа, добавлен 04.03.2020Анализ сущности и свойств тригонометрических и обратных тригонометрических функций. Характеристика основных методов решения элементарных тригонометрических уравнений, а также примеры решения нестандартных тригонометрических уравнений и неравенств.
курсовая работа, добавлен 09.11.2017Исследование проблемы и критериев выбора эффективных методов принятия управленческих решений местными органами власти. Необходимость совершенствования системы экспертных методов, используемых в процессе разработки и реализации муниципальных решений.
статья, добавлен 29.03.2021Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.
курсовая работа, добавлен 16.06.2021Разработка математической модели деформирования пологих ребристых оболочек с учетом геометрической нелинейности, а также возможности развития ползучести материала. Исследование и анализ влияния длительности нагружения на снижение критической нагрузки.
автореферат, добавлен 30.06.2018Основные понятия теории погрешностей и этапы решения задачи на компьютере. Численное решение скалярных нелинейных уравнений методами Гаусса, простой итерации и Гаусса-Зейделя. Численное решение задач Коши для обыкновенных дифференциальных уравнений.
учебное пособие, добавлен 26.03.2014Совместность системы линейных уравнений методом Гаусса; средствами матричного исчисления. Решение векторных задач методом Крамера. Условие линейной независимости и координаты векторов в базисе. Решение задач с построением графика, пределы функции.
контрольная работа, добавлен 11.03.2012Анализ материала, нужного учителю математики для реализации межпредметных связей математики и технологии. Изучение методов повышения качества математического образования учащихся, применения их математических знаний к решению задач повседневной практики.
статья, добавлен 06.04.2019