Построение и анализ моделей регрессии

Анализ динамики роста стоимости основных рабочих фондов. Расчёт парного коэффициента корреляции. Проверка значимости с помощью статистики Стьюдента. Вычисление оценки неизвестных параметров уравнения парной регрессии по методу наименьших квадратов.

Подобные документы

  • Построение оценки функции регрессии с помощью метода наименьших квадратов. Нахождение значения коэффициента методами трапеций и парабол, решение уравнения. Изучение распределения температуры в тонком цилиндрическом стержне. Решение краевой задачи.

    дипломная работа, добавлен 24.12.2011

  • Характеристика понятия и сущности методики оценки параметров распределения, проверки гипотез, изучение системы случайных величин: корреляции, регрессии. Анализ особенностей статистического оценивания. Характеристика выборочного коэффициента корреляции.

    курсовая работа, добавлен 21.09.2017

  • Правила проведения количественного анализа. Расчёт неизвестных величин по результатам измерений, содержащих случайные ошибки. Оценка отклонения точки от прямой. Основной принцип метода наименьших квадратов. Построение градуировки в спектрофотометрии.

    презентация, добавлен 29.05.2020

  • Анализ исходных динамических рядов, их исследование на непрерывность. Количественное изменение тесноты связи признака-функции и признаков-факторов методом парной корреляции. Расчет показателей вариации. Построение уравнения множественной регрессии.

    курсовая работа, добавлен 22.10.2017

  • Статистическая зависимость расходов на гостиницу от стоимости путевки. Построение графика и поиск коэффициента корреляции. Параметры линейной модели регрессии. Проверка явления гетероскедастичности на основе критерия корреляции Спирмена, автокорреляция.

    задача, добавлен 06.11.2015

  • Общая характеристика графика модели парной регрессии. Знакомство с наиболее важными этапами расчета коэффициента детерминации. Рассмотрение основных способов построения степенной модели парной регрессии. Особенности проведения корреляционного анализа.

    статья, добавлен 27.12.2020

  • Сущность регрессионного анализа, его цели и условия применения. Характеристика уравнения регрессии, метода наименьших квадратов, диаграммы рассеяния. Остаточная дисперсия и коэффициент детерминации R-квадрат. Коэффициент множественной корреляции R.

    презентация, добавлен 18.12.2012

  • Применение корреляционного анализа в математической статистике. Классическая линейная модель множественной регрессии. Использование метода наименьших квадратов для оценки параметров модели множественной регрессии. Условия и теорема Гаусса-Маркова.

    презентация, добавлен 15.12.2014

  • Характеристика значимости коэффициентов простой линейной регрессии. Определение t-критерия Стьюдента при заданных параметрах парной регрессии, среднем квадратическом отклонении факторного признака, общей и остаточной дисперсии, количестве узловых точек.

    контрольная работа, добавлен 18.12.2014

  • Рассмотрение метода наименьших квадратов как базового метода оценки неизвестных параметров регрессионных моделей по выборочным данным. Нахождение выборочного уравнения зависимости y от x на основании выборки из четырех наблюдений и построение зависимости.

    контрольная работа, добавлен 27.04.2014

  • Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.

    краткое изложение, добавлен 22.05.2010

  • Построение аналитической группировки по факторному признаку. Определение среднего линейного и квадратического отклонения, коэффициента вариации, моды и медианы. Построение линейного уравнения регрессии, расчет коэффициентов корреляции и эластичности.

    контрольная работа, добавлен 23.03.2014

  • Нахождение выборочных коэффициентов ковариации и корреляции. Использование критерия Стьюдента и проверка статистической значимости коэффициента корреляции. Числовые характеристики выборки. Таблица формул для расчета основных выборочных характеристик.

    лабораторная работа, добавлен 14.08.2017

  • Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.

    статья, добавлен 02.02.2019

  • Характеристика метода наименьших квадратов. Краткая информация о двухшаговом и трёхшаговом методах наименьших квадратов. Парная линейная регрессия и системы одновременных уравнений. Автокорреляция остатков как важная проблема при оценивании регрессии.

    контрольная работа, добавлен 09.07.2011

  • Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.

    контрольная работа, добавлен 17.05.2019

  • Измерение интервалов между последовательно поступившими заявками для исследования потока заявок на производимую продукцию на предприятии. Построение корреляционного поля. Вычисление выборочного коэффициента корреляции и составление уравнения регрессии.

    контрольная работа, добавлен 15.04.2015

  • Выбор типа математической функции при построении уравнения регрессии. Статистическая оценка достоверности регрессионной модели. Интервальная оценка параметров уравнения. Задачи корреляционно-регрессионного анализа. Абсолютные показатели силы связи.

    презентация, добавлен 05.06.2012

  • Методы получения адекватных моделей для решения управленческих задач. Свойства почв и метеоусловий северной и центральной зон Краснодарского края. Оценка урожайности по методу наименьших квадратов. Моделирование с помощью кусочно-линейной регрессии.

    статья, добавлен 26.04.2017

  • Визуализация метода наименьших квадратов (МНК), его параметризация. Свойства МНК оценок, характеристика гипотезы линейной регрессии. Доверительные интервалы для коэффициентов регрессии. Правила принятия гипотез, аномальные значения (выбросы) и пр.

    презентация, добавлен 23.04.2015

  • Математические методы систематизации, использование статистических данных для научных и практических выводов. Использование метода наименьших квадратов для исследования линейной регрессии и нахождения выборочного коэффициента корреляции исходных данных.

    курсовая работа, добавлен 19.06.2015

  • Характеристика понятия парной регрессии. Неправильный выбор математической функции и недоучет в уравнении регрессии существенного фактора как ошибки спецификации. Использование временной информации и графический метод подбора вида уравнения регрессии.

    лекция, добавлен 25.04.2015

  • Описание построения графиков фактических значений и линии регрессии. Определение коэффициента детерминации, использование математического пакета MathCAD и Excel. Вычисление направления и тесноты связи, расчет линейного коэффициента парной корреляции.

    контрольная работа, добавлен 30.09.2018

  • Применение регрессионного анализа для моделирования и изучения данных в математической статистике. Оценивание коэффициентов регрессии с помощью метода наименьших квадратов. Составление алгоритма регрессионного анализа линейного уравнения в Mathcad.

    курсовая работа, добавлен 12.12.2014

  • Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".

    статья, добавлен 03.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.