Основы комбинаторики

История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.

Подобные документы

  • Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.

    учебное пособие, добавлен 29.01.2014

  • Некоторые аспекты истории числовых комбинаторных задач. Комбинаторный анализ как самостоятельная математическая дисциплина. Пример задач разной сложности. Анализ задачи о магическом шестиугольнике Адамса, история ее решения. Парадокс дней рождения.

    реферат, добавлен 28.03.2013

  • Сущность и составные части комбинаторики как ключевой ветви математики. Теория конфигураций и перечисления. Правило суммы и произведения. Основные свойства сочетаний. Решение задачи с помощью треугольника Паскаля. Комбинаторные конфигурации и блок-схемы.

    контрольная работа, добавлен 17.12.2011

  • Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.

    методичка, добавлен 07.06.2012

  • Возникновение комбинаторики как науки, важные достижения и интерес к комбинаторным задачам. Значение комбинаторики в различных областях науки и производственной сферы. Общие формулы, позволяющие решать комбинаторные задачи, интересные примеры.

    реферат, добавлен 13.04.2014

  • Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.

    учебное пособие, добавлен 25.12.2013

  • История развития теории вероятности как науки. Задачи вероятностного характера в различных азартных играх. Изучение теории вероятностей в работах Паскаля, Ферма, Гюйгенса. Теория ошибок измерения и парадоксы Бертрана. Российская школа теории вероятности.

    реферат, добавлен 08.06.2017

  • Цель изучения бинома Ньютона – упрощение вычислительных действий. Биномиальные коэффициенты и их получение с помощью треугольника Паскаля (пользуясь операцией сложения). Сумма показателей степеней a и b каждого члена разложения. Бином в общем виде.

    презентация, добавлен 11.05.2016

  • Изучение элементов комбинаторики. Случайные события и их вероятности. Классическая формула вероятностей. Последовательность независимых испытаний. Применение формулы Бернулли. Закон распределения случайных величин. Математическое ожидание и дисперсия.

    контрольная работа, добавлен 27.11.2017

  • Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.

    контрольная работа, добавлен 17.03.2015

  • Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.

    презентация, добавлен 10.11.2015

  • Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.

    учебное пособие, добавлен 08.12.2013

  • Вероятность случайного события и элементы комбинаторики. Основные теоремы теории вероятностей. Многомерная случайная величина и закон ее распределения. Точечные оценки параметров генеральной совокупности. Гипотеза о равенстве математических ожиданий.

    презентация, добавлен 05.10.2014

  • Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.

    реферат, добавлен 13.03.2017

  • Формулы и принципы комбинаторики, применение ее в теории вероятностей для подсчета вероятности случайных событий. Изучение закономерности массовых случайных явлений, правильное понимание статистических закономерностей, проявляющихся в природе и технике.

    контрольная работа, добавлен 24.03.2018

  • Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.

    презентация, добавлен 27.09.2017

  • Расчет вероятности своевременного прибытия автобусов. Применение теорем умножения вероятностей независимых событий и сложения вероятностей несовместимых событий. Применение формулы полной вероятности при определении вероятности дефекта укупорки банки.

    контрольная работа, добавлен 26.05.2015

  • Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.

    контрольная работа, добавлен 25.11.2015

  • Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.

    курсовая работа, добавлен 19.10.2014

  • Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).

    учебное пособие, добавлен 16.02.2014

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Особенности изучения вероятностных закономерностей массовых однородных случайных событий. Рассмотрение типов комбинаторных задач. Определение методов их решения. Выявление противоположных событий образующих полную группу. Оценка независимости событий.

    реферат, добавлен 20.10.2015

  • Предмет и понятия теории вероятностей. Относительная частота случайного события и ее устойчивость. Теорема умножения и сложения вероятностей. Основные понятия и методы математической статистики. Генеральная совокупность и выборка. Вариационный ряд.

    учебное пособие, добавлен 24.06.2014

  • Работы выдающегося математика, физика, философа и писателя Паскаля. Свойства и устройство треугольника Паскаля. Изображение равнобедренного треугольника точками. Построение треугольных чисел и их обобщения на случай пространств всех размерностей.

    презентация, добавлен 23.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.