Однозначные ветви многозначных функций
Возможности применения к многозначным функциям понятий и результатов, полученных для однозначных функций. Определение значения радикала при непрерывном движении точки по окружности в положительном направлении. Определения порядка точки разветвления.
Подобные документы
Определение Бохнера для однозначной почти-периодической функции. Описание диагональной последовательности функций. Невозможность выбора равномерно сходящейся подпоследовательности. Доказательство теоремы о сумме многозначных почти-периодических функций.
статья, добавлен 26.01.2018Число пи как отношение длины окружности, как траектории движения материальной точки вокруг силового центра, к ее диаметру, история его определения. Сущность и главные принципы физического метода определения данного численного значения, его обоснование.
статья, добавлен 20.10.2013Обоснование непрерывность элементарных функций для точки, у которой малые изменения аргумента приводят к малым изменениям математического значения. Анализ формулы гиперболических значений. Обзор сложной и обратной функций, а так же точек их разрыва.
лекция, добавлен 29.09.2013Характеристика признаков монотонности функций. Правила отыскания локального экстремума, определение точки максимума и минимума. Сущность теоремы Ферма. Отыскание значений непрерывной на отрезке функции. Направление выпуклости графика и точки перегиба.
лекция, добавлен 29.09.2013Характеристика особенностей первого и второго замечательного пределов. Сравнение бесконечно малых функций. Рассмотрение значения и места непрерывных функций. Определение непрерывности функции в точке. Исследование точки разрыва и их классификации.
реферат, добавлен 18.12.2017Понятие и порядок определения точки сгущения множества. Исследование непрерывных функций. Частная производная функции. Дифференцируема в точке функция и основные требования к ней. Определение касательного вектора и плоскости к поверхности. Матрица Якоби.
шпаргалка, добавлен 11.04.2012Непрерывность функции в точке и непрерывность на отрезке. Свойства функций, непрерывных в точке и на отрезке. Точки разрыва функции, их классификация. Поиск разрыва функций и определение их типа. Точки, в которых условие непрерывности не выполняется.
контрольная работа, добавлен 17.12.2013Свойства и методы вычисления пределов функций одной переменной. Исследование свойств функций, непрерывных в точке и на интервале, их корни и промежуточные значения, точки разрывов и их классификация. Использование метода сечений при построении графика.
эссе, добавлен 28.07.2013Три признака равенства треугольников. "Замечательные" линии и точки: высоты, медианы, бисектриссы треугольника, прямые Эйлера и Симсона. Практическая значимость точки Торричелли, окружности девяти точек, точки Брокара в строительстве и архитектуре.
доклад, добавлен 15.09.2014Образующие элементы колец и полей инвариантов коприсоединенных представлений борелевских и максимальных унипотентных подгрупп в простых группах Ли. Особенности и условия применения метода редукции сферических функций, анализ полученных результатов.
статья, добавлен 31.05.2013Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.
лекция, добавлен 26.01.2014Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015Определение положения точки в пространстве. Правая декартова, полярная и косоугольная системы координат. Способы измерения дуг. Определение координат точки в пространстве, окружности и ее радиуса. Построение сферической и цилиндрической системы координат.
презентация, добавлен 12.10.2012По плану исследовать функцию и построить её график: область определения, точки разрыва, корни уравнения, точки перегиба. Решить систему методом Гаусса: расширенная матрица. Вычислите площадь фигуры, ограниченной графиками функций. Вычислите интеграл.
задача, добавлен 03.05.2009Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.
лекция, добавлен 17.01.2014Непрерывность функции в точке и на множестве. Точки разрыва функции и их классификация. Действия над непрерывными функциями. Непрерывность основных элементарных функций. Свойства функций, непрерывных на отрезке, равномерная непрерывность функции.
лекция, добавлен 10.02.2016Теории мультипликативных функций, определения и свойства данных функций, методы их суммирования. Рассмотрение результатов суммирования известной функции Эйлера j(n) и Мебиуса. Теорема Мертенса. Определение средних значений функций натурального аргумента.
дипломная работа, добавлен 29.10.2010Рассмотрение общих свойств функций. Изучение области определения и множества значений функции. Характеристика экстремальных свойств. Оценка отличий монотонных функций. Определение чётности, периодичности, обратимости функций в задачах с параметром.
курсовая работа, добавлен 22.02.2019- 19. Теория функций
Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.
контрольная работа, добавлен 20.12.2013 Понятие функции в математике, её основные свойства, аналитический и табличный способы задания. Виды функций и их свойства, коэффициент пропорциональности k. Область определения функции. Правила определения областей возрастания и убывания функций.
контрольная работа, добавлен 13.10.2015Обобщение теоремы искажения в классе S. Неравенства, дающие точные границы для модуля производных функций на любой окружности, лежащей в круге. Свойства однолистных в единичном круге функций, которые геометрически характеризуют конформные отображения.
статья, добавлен 31.05.2013Суть метода нахождения обратных функций. Основные пути построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.
статья, добавлен 29.01.2019Описание уравнения прямой, проходящей через две точки, общее уравнение плоскости, проходящей через перпендикуляры, опущенные из точки на плоскости. Поиск абсциссы точки пересечения прямой с координатной плоскостью, уравнение касательной к окружности.
контрольная работа, добавлен 24.09.2018Понятие алгебраической кривой второго порядка. Окружность – множество, состоящее из всех точек плоскости, находящихся на равном расстоянии от фиксированной точки. Определение окружности для вывода ее уравнения. Фокусы эллипса и эксцентриситет эллипса.
контрольная работа, добавлен 09.12.2016Определение элементарных функций. Область определения и значения функции. Основные простейшие элементарные функции: линейная, степенная, квадратичная, показательная, логарифмическая, тригонометрическая, oбратная тригонометрическая. Функция и её свойства.
реферат, добавлен 30.10.2010