Высшая математика в примерах и задачах
Учебное пособие содержит краткий теоретический материал по определителям и матрицам, системам линейных уравнений, векторной и линейной алгебре, аналитической геометрий на плоскости и в пространстве, функциям и вычислению, дифференциальному исчислению.
Подобные документы
- 101. Теория Фредгольма
Рассмотрение интегральных уравнений в математике. Совокупность методов и результатов в спектральной теории операторов Фредгольма. Особенности решения однородных и неоднородных интегральных уравнений. Понятие ядер Фредгольма в гильбертовом пространстве.
реферат, добавлен 09.10.2014 Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.
реферат, добавлен 07.04.2011Методика проведения исследования тесноты линейных корреляционных зависимостей между случайными величинами по полученным результатам выборочных наблюдений. Характеристика важнейших свойств, методов расчета выборочного коэффициента линейной корреляции.
статья, добавлен 03.03.2018Систематизация знаний о системах линейных уравнений. Метод Гаусса как наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Метод удобнее применять на расширенной матрице. Пример решения уравнений.
презентация, добавлен 17.05.2023Представление плоскости уравнением. Уравнение плоскости "в отрезках". Расстояние от точки до плоскости. Канонические и параметрические уравнения прямой. Расстояние между точками. Деление отрезка в данном отношении. Уравнение поверхности (гиперболоида).
реферат, добавлен 27.01.2016Решение системы линейных алгебраических уравнений с тремя неизвестными. Решение системы уравнений методом Крамера. Построение опорного плана транспортной задачи и проверка его оптимальности, построение симплекс-таблицы. Поиск точек экстремума функции.
контрольная работа, добавлен 05.11.2012Прямая и обратная задачи решения системы линейных алгебраических уравнений. Использование результата для синтеза линейных систем при известных воздействиях на них и их реакциях на эти воздействия. Алгоритмы решения многокритериальной задачи оптимизации.
статья, добавлен 14.07.2016Определение линейной алгебры и ее основных свойств. Описание формирования базисов из логических переменных. Характеристика процесса логического синтеза двузначных и многозначных цифровых структур в линейной алгебре. Пример разложения логических функций.
статья, добавлен 29.07.2017Дифференциальные уравнения и их применение в прикладных задачах. Математическая модель численного интегрирования дифференциальных уравнений. Математическое описание зависимости концентрации. Расчет профиля температур при нестационарной теплопроводности.
дипломная работа, добавлен 19.06.2015Алгебраическое дополнение элемента в определителе матрицы. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными. Вычисление предела функции. Использование правила Лопиталя для устранения неопределенности.
контрольная работа, добавлен 25.03.2014Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.
контрольная работа, добавлен 06.09.2008Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.
учебное пособие, добавлен 02.02.2012Предел функции в точке, ее непрерывность. Бесконечно большие и малые функции. Классификация точек разрыва. Первый и второй замечательные пределы. Сравнение бесконечно малых функций. Асимптоматические формулы, правило Лопиталя. Разложение в ряд Тейлора.
учебное пособие, добавлен 12.02.2013Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.
контрольная работа, добавлен 26.07.2009Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.
курсовая работа, добавлен 04.12.2018- 116. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
лекция, добавлен 28.07.2015 Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.
контрольная работа, добавлен 23.06.2020Классификация СЛАУ (систем линейных алгебраических уравнений). Метод Гаусса решения СЛАУ. Анализ СЛАУ приведённого вида и описание общего решения. Решение матричных уравнений, отыскание обратной матрицы методом Гаусса. Составление блочной матрицы.
курс лекций, добавлен 19.09.2015Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.
контрольная работа, добавлен 12.10.2016Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010- 121. Метод Гаусса
Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.
задача, добавлен 24.11.2014 - 122. Прямая на плоскости
Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.
реферат, добавлен 16.05.2013 Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.
лекция, добавлен 09.09.2017Скалярные и векторные величины, линейные операции над ними в координатной форме, координатный базис, правило паралеллограма. Скалярное произведение векторов, их разложение по ортам в пространстве. Сонаправленные и противоположные колинеарные вектора.
методичка, добавлен 01.02.2013Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010