Основные свойства комбинаторики

Использование формул комбинаторики при непосредственном вычислении вероятностей. Понятие и примеры перестановок, размещений и сочетаний. Выявление и оценка количества комбинаций, которые можно составить из элементов заданного конечного множества.

Подобные документы

  • Усвоение межпредметных понятий и их основа формирования целостной естественнонаучной картины мира. Функция как математическое понятие, отражающее связь элементов одного множества с элементами из другого множества. Географические и декартовы координаты.

    реферат, добавлен 01.07.2015

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.

    учебное пособие, добавлен 12.03.2015

  • Использование математической схемы при обучении учащихся решению задач. Применение занимательной комбинаторики для обучения младших школьников. Психологические особенности формирования универсальных учебных действий у учащихся начальных классов.

    статья, добавлен 04.08.2021

  • Использование математики в задачах информационной безопасности. Понятие множества, его применение. Методы принятия решений в неопределенных условиях в основе теории множеств. Примеры применения теории множеств в отрасли программирования и в жизни.

    контрольная работа, добавлен 21.09.2017

  • Дифференциальное уравнение Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Нахождение кривых распределения вероятностей и программное обеспечение как примеры решения задач математической статистики.

    дипломная работа, добавлен 26.02.2020

  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад, добавлен 13.03.2022

  • Определение сходящегося и расходящегося ряда, его суммы. Рассмотрение основных различий между необходимым и достаточным признаком сходимости. Особенности остаточного члена формулы Тейлора. Арифметические действия, которые можно производить с рядами.

    контрольная работа, добавлен 11.01.2014

  • Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.

    лекция, добавлен 03.05.2016

  • Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.

    контрольная работа, добавлен 18.05.2013

  • Понятие множества, его структура и главные элементы, существующие операции и порядок их реализации, способы задания. Сущность и методика пересечения, объединения, вычитания. Механизм и основные правила нахождения декартового произведения множества.

    контрольная работа, добавлен 24.02.2015

  • Применение понятия о характеристических функциях подмножеств, теоремы о порядках множества подмножеств конечного множества для двух частных случаев. Конечное несамопринадлежащее множество простой структуры. Схема алгоритма определения порядка множества.

    статья, добавлен 26.04.2019

  • Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.

    лекция, добавлен 26.07.2015

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

  • Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.

    презентация, добавлен 24.06.2014

  • Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.

    реферат, добавлен 18.03.2010

  • Теория графов как область дискретной математики с геометрическим подходом к изучению объектов. Решение математических развлекательных задач и головоломок. Эйлеров путь графа. Краткие пути решения. Задача коммивояжера - одна из задач теории комбинаторики.

    реферат, добавлен 13.01.2012

  • Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.

    реферат, добавлен 15.06.2010

  • Понятие теории вероятностей, ее предмет. Возможность применения методов теории вероятностей к изучению статистических закономерностей. Математическое ожидание и дисперсия. Проявление предельных теорем при формальном изложении теории вероятностей.

    контрольная работа, добавлен 01.08.2017

  • Понятие и общая характеристика различных типов точечных множеств: ограниченных сверху и снизу, неограниченных. Определение верхней и нижней грани. Расположение точечного множества вблизи какой-либо точки на прямой. Открытые и замкнутые множества.

    курсовая работа, добавлен 19.11.2014

  • Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.

    методичка, добавлен 07.08.2015

  • Расчет вероятности качественного изготовления деталей с использованием формулы Бейеса. Расчет вероятности выпадения заданного числа очков игральной кости. Составление таблицы распределения вероятностей числа ошибок в проверяемых бухгалтерских балансах.

    контрольная работа, добавлен 10.05.2014

  • Простейшие элементарные функции: постоянная, степенная, показательная, логарифмическая, тригонометрическая, обратная. Особенности операции извлечения из корня. Изучение функций, которые можно получить при помощи конечного числа арифметических операций.

    презентация, добавлен 21.09.2013

  • Принципы сложения и умножения. Общее понятие о подмножествам. Принцип включения и исключения. Размещения с повторениями, сочетания. Треугольник Паскаля. Бином Ньютона и полиноминальная формула (комбинаторный смысл). Главные свойства перестановок.

    презентация, добавлен 27.09.2017

  • Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.

    статья, добавлен 04.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.