Показательные и логарифмические функции, уравнения и неравенства

Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.

Подобные документы

  • Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.

    контрольная работа, добавлен 22.04.2012

  • Решение квадратичных неравенств в школьном курсе. Функциональный метод решения линейных, квадратичных, логарифмических, иррациональных и показательных неравенств. Некоторые лжепреобразования. Применение в математике правила возведения в квадрат.

    дипломная работа, добавлен 08.10.2017

  • Равносильные уравнения, их следствия. Методы решения уравнений, тождественные преобразования над выражениями, входящими в уравнение. Правила преобразования уравнений. Алгоритм метода интервалов, примеры решения. Числовые неравенства, основные свойства.

    реферат, добавлен 22.12.2011

  • Модуль как расстояние от нуля до числа, которое выражено в единичных отрезках. Характеристика основных признаков простейших уравнений и неравенств. Исследование алгоритма раскрытия модуля неравенства в зависимости от знака подмодульного выражения.

    статья, добавлен 22.02.2017

  • Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.

    статья, добавлен 30.10.2016

  • Графическое решение квадратного уравнения. График уравнения с двумя переменными как множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство, принципы его составления. Применение графиков в решении неравенств.

    реферат, добавлен 03.04.2012

  • Основные методы решения рациональных уравнений: линейных и их систем, квадратных и сводящихся к ним, возвратных. Формула Виета для многочленов высших степеней. Свойства неравенств, метод интервалов и графическое решение, системы рациональных неравенств.

    учебное пособие, добавлен 05.03.2010

  • Изучение эволюции уравнений и их решений. Теории вычислений Древнего Египта, способы решения квадратных уравнений в Древнем Вавилоне и арабских странах. Кубические уравнения Греции, формула Тартальи–Кардано. Методы решения уравнений высоких степеней.

    курсовая работа, добавлен 22.05.2010

  • Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.

    курсовая работа, добавлен 09.03.2012

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.

    практическая работа, добавлен 22.10.2019

  • Описание основных методов решения показательных уравнений. Предупреждение появления типичных ошибок в записи функции, подготовка к контрольной работе. Активизация работы класса через воспитание воли и настойчивости для достижения конечных результатов.

    разработка урока, добавлен 27.10.2015

  • Линейные и квадратные уравнения, содержащие параметр, их типы и методики разрешения. Дробно-рациональные уравнения, содержащие параметр, сводящиеся к линейным. Иррациональные, логарифмические и показательные уравнения, содержащие параметр, их описание.

    контрольная работа, добавлен 26.12.2011

  • Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.

    учебное пособие, добавлен 18.09.2012

  • Рассмотрение примеров применения логарифмов, логарифмической и показательной функций в физике, химии, биологии, географии, астрономии, а также экономике. Определение условий выплаты по банковскому вкладу с учетом начисления процентов на проценты.

    реферат, добавлен 01.06.2014

  • Особенности решения иррациональных уравнений и неравенств стандартного типа и повышенной сложности. Исторические аспекты изучения данного вопроса. Возведение обоих частей уравнений в соответствующую натуральную степень. Введение новых переменных.

    реферат, добавлен 14.04.2010

  • История развития знаний и известные способы решения квадратных уравнений. Зависимость корней от знака дискриминанта. Решение квадратных уравнений с помощью циркуля, линейки. Свойства коэффициентов квадратного уравнения, теорема Виета и задача Диофанта.

    презентация, добавлен 13.01.2017

  • Преобразование и объединение групп общих решений тригонометрических уравнений. Решение уравнений с применением формул тройного аргумента или понижения степени. Функциональные методы решения тригонометрических и комбинированных уравнений, отбор корней.

    реферат, добавлен 09.09.2016

  • Исследование показательной функции как взаимно обратной, ее свойства и график. Понятие логарифмической функции, ее основные свойства, графики функции и нахождение области определения. Практическая значимость логарифмической и показательной функций.

    презентация, добавлен 14.11.2015

  • Определение, виды, порядок, а также способы решения дифференциального уравнения. Методика решения уравнений с разделяющимися переменными. Сущность методов Бернулли и Лагранжа. Формулы для нахождения общего решения однородного и неоднородного уравнений.

    шпаргалка, добавлен 10.09.2009

  • Предложение эффективного численного метода решения линейных краевых задач для обыкновенных дифференциальных уравнений второго порядка. Изложение свойстве составной кинематической кривой. Рассмотрение примеров решения краевых задач линейного уравнения.

    статья, добавлен 27.05.2018

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • Изучение основ теории решения изобретательских алгебраических задач, выявление их функций и областей применения. Рассмотрение примеров решения параметрических уравнений и неравенств алгебраическим, аналитическим и функционально-графическим способами.

    реферат, добавлен 02.02.2014

  • Определение псевдопараболических уравнений по характеру свойств решений. Решение задачи сопряжения для псевдопараболических уравнений третьего порядка с использованием тождества Лагранжа, функций Грина и Римана. Определение условий разрешимости уравнения.

    статья, добавлен 18.05.2016

  • Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.

    курсовая работа, добавлен 23.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.