Тауберові та Мерсерові теореми для деяких методів підсумовування функцій кількох змінних
З’ясування необхідних і достатніх умов у мерсерових і тауберових теоремах, їх доведення для банаховозначних функцій. Розгляд статистичної збіжності та обмеженості послідовностей. Застосування методів Гельдера і Чезаро на лінійному топологічного простору.
Подобные документы
Вивчення змісту проблеми апроксимації неперервних відображень на банахових просторах та межах Фреше в класі аналітичних відображень. Доведення просторової теореми Вінера. Застосування поліномів для побудови і дослідження функцій на гільбертовому кубі.
автореферат, добавлен 20.07.2015Встановлення необхідних та достатніх умов скінченності груп скінченних автоматів. Використання методів геометричної та комбінаторної теорії груп і теорії груп автоморфізмів кореневих дерев. Доведення критерію спряженості елементів скінченного порядку.
автореферат, добавлен 11.08.2015Доведення теореми, що описує мінімальне зростання цілої функції із заданими нулями відносно їх лічильної функції зовні виняткової множини скінченної логарифмічної міри при довільному зростанні лічильної функції та коли показник збіжності є цілим числом.
автореферат, добавлен 17.07.2015Вивчення дисипативної системи розсіяння з пк-просторами станів та їх передавальних функцій. Доведення теореми про належність передавальних функцій систем до класів Шура. Результати застосування до дослідження множини самоспряжених оборотних розв’язків.
автореферат, добавлен 22.07.2014- 30. Швидкості збіжності рядів Тейлора і рядів фабера на класах –інтегралів функцій комплексної змінної
Розбиття множини інтегралів типу Коші вздовж замкненої жорданової спрямлюваної кривої Г на підмножини. Швидкість збіжності рядів Тейлора для функцій із заданих класів, її дослідження та головні фактори впливу. Точні порядкові оцінки наближень функцій.
автореферат, добавлен 18.11.2013 Вивчення властивостей Р-півадитивних функцій та їх застосування до теорії зростання субгармонічних функцій. Розгляд особливостей субгармонічних функцій, які локально задовольняють умову Левіна, та спеціальних інтегралів від субгармонічних функцій.
автореферат, добавлен 23.02.2014Опис структури множини функцій періоду неперервних потоків на топологічних многовидах. Обчислення гомотопічного типу компонент зв'язності груп дифеоморфізмів. Доведення класифікації компонент зв'язності простору функцій Морса на компактних поверхнях.
автореферат, добавлен 30.07.2015Порядкові оцінки найкращих M-членних тригонометричних наближень класів періодичних функцій багатьох змінних у просторі Lq. Дослідження колмогоровських, тригонометричних та лінійних поперечників класів періодичних функцій багатьох змінних у просторі Lq.
автореферат, добавлен 29.08.2015Встановлення рівності Карлемана та теореми Йенсена-Літтлвуда для прямокутника. Характеристика Неванлінни для мероморфних у півсмузі функцій. Отримання критерію скінченності голоморфної функції методом рядів Фур'є. Доведення еквівалента гіпотези Рімана.
автореферат, добавлен 22.07.2014Поняття насичення та регулярності для загальних лінійних методів підсумовування рядів Фур'є. Характеристика, значення та сутність лiнiйного методу за тригонометричною системою. Порядки та класи насичення для методів Зігмунда, Рогозинського, Фавара.
автореферат, добавлен 28.07.2014Геометрична класифікація функцій Морса–Смейла на тривимірних многовидах. Отримання критерів топологічної та геометричної еквівалентності функцій Морса, заданих на замкнених тривимірних многовидах, доведення теореми реалізації для побудованих інваріантів.
автореферат, добавлен 28.09.2015Аналіз апроксимативних характеристик класів періодичних функцій багатьох змінних. Встановлення точних за порядком оцінки ортопроекційних поперечників класів періодичних функцій. Порівняння результатів з оцінками лінійних та колмогоровських поперечників.
автореферат, добавлен 26.08.2014Розгляд поведінки власних значень та власних функцій. Вивчення характеру збіжності власних функцій задачі Діріхле для лінійного рівняння другого порядку в послідовності областей з дрібнозернистою межею до відповідних власних функцій граничної задачі.
автореферат, добавлен 24.06.2014Особливість дослідження асимптотичної поведінки розв’язків диференційних рівнянь дробового порядку. Доведення повноти системи власних та приєднаних функцій крайової задачі із лінійними та нелінійними умовами. Характеристика теореми про базисність Ріса.
автореферат, добавлен 28.12.2015Визначення необхідних та достатніх умов для задоволення підмножиною числової площини для того, щоби кожна нарізно стала функція була поліноміальною. Перевірка hv-зв'язності об'єднання довільної сім'ї hv-зв'язних множин. Інтерполяційна теорема Лагранжа.
статья, добавлен 25.03.2016Розповсюдження відомих результатів щодо лінійних та ортопроекційних поперечників та інших величин функцій. Вивчення отриманих результатів щодо наближення східчасто-гіперболічними сумами Фур'є поперечників із класів періодичних функцій багатьох змінних.
автореферат, добавлен 30.10.2015Функція, її границя та неперервність. Область визначення функції та її геометричний зміст. Похідна та диференціали функцій багатьох змінних. Теорема рівності других мішаних похідних. Означення частинної похідної функції двох змінних по одній з них.
лекция, добавлен 08.08.2014Встановлення більш точних оцінок логарифмічної похідної мероморфних і субгармонійних функцій. Доведення аналогу леми про логарифмічну похідну для субгармонійних функцій. Сучасні проблеми та теоретичні моделі в лінійних та диференціальних алгебрах.
автореферат, добавлен 12.07.2015Описання класу функцій, які мають максимальний порядок спадання до нуля модуля гладкості. Визначення нової властивості константи найкращого наближення функції із простору Lp, 0
автореферат, добавлен 27.09.2014- 45. Наближення диференційовних функцій лінійними методами підсумовування їх рядів та інтегралів Фур'є
Отримання повного асимптотичного розкладу точних верхніх меж наближень гармонійними та бігармонійними інтегралами Пуассона на класах Соболєва та на класах спряжених функцій. Розв’язання задачі Колмогорова–Нікольського на класах диференційовних функцій.
автореферат, добавлен 14.09.2014 Вивчення змінних та сталих величин, парності, непарності, періодичності, монотонності функцій. Характеристика зростаючих, складних, спадаючих, обмежених та періодичних функцій. Дослідження алгебраїчних, дробно-раціональних та ірраціональних функцій.
лекция, добавлен 21.12.2010- 47. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Умови збіжності бакстерівських сум від приростів загального виду гауссових випадкових полів. Теорема Леві-Бакстера для сумісно субгауссового випадкового поля. Симетричний стохастичний інтеграл з диференціалом від випадкового процесу бакстерівського типу.
автореферат, добавлен 27.08.2014 Розгляд класу функцій, що містить в собі степеневі функції, многочлени, показникові, логарифмічні, обернені тригонометричні. Аналіз способу інтегрального означення деяких функцій та дослідження властивості цього способу, враховуючи відповідні функції.
курсовая работа, добавлен 12.12.2016- 49. Нерівності типу Колмогорова для похідних дробового порядку та їх застосування в теорії апроксимації
Дослідження задачі про нерівності типу Колмогорова для похідних дробового порядку функцій однієї та багатьох змінних, порівняння точних констант у нерівностях для норм "проміжних" похідних періодичних і неперіодичних функцій багатьох змінних у просторах.
автореферат, добавлен 30.08.2014 Практичне використання основних понять та формул теорії функції багатьох змінних при рішенні завдань на знаходження області визначення функцій двох змінних, їх границь, точок розриву, градієнтів, частинних похідних та диференціалів різних порядків.
практическая работа, добавлен 28.09.2009