Гильбертовы пространства аналитических функций

Понятие гильбертовых пространств аналитических функций. Доказательство теоремы о том, что открытый или единичный круг, квадратично интегрируемых аналитических функций в области D является гильбертовым пространством. Определение пространства Харди.

Подобные документы

  • Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.

    лекция, добавлен 03.05.2016

  • Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.

    презентация, добавлен 18.09.2013

  • Свойства функций, непрерывных на отрезке. Теоремы и их доказательства. Определение производной и ее приложения. Закон равномерного движения, механический смысл производной. Геометрический смысл производной. Непрерывность дифференцируемой функции.

    лекция, добавлен 05.03.2009

  • Разработка новых методов аппроксимации широкого класса функций - локально липпшцевых функций, построение на их основе новых методов оптимизации негладких гладких функций, к которым неприменимы условия сходимости оптимизационных процессов высокого порядка.

    автореферат, добавлен 21.03.2015

  • Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.

    доклад, добавлен 23.08.2013

  • Определение топологического пространства. Основные этапы развития топологии. Классическое определение непрерывности числовой функции в точке, восходящее к Коши. Задачи и виды топологии. Суть аксиомы Колмогорова. Отображения топологических пространств.

    реферат, добавлен 06.03.2010

  • Обратные тригонометрические функции (аркфункции): определение и свойства. Теоремы об аркфункциях. Доказательство числовых тождеств. Решение уравнений и неравенств с аркфункциями. Использование свойств монотонности обратных тригонометрических функций.

    контрольная работа, добавлен 22.04.2012

  • Исследование процесса кратного интегрирования при дифференциальном исчислении функций. Определение частных производных функций двух переменных и установление их геометрического смысла. Анализ правил дифференцирования и табличных производных функции.

    курсовая работа, добавлен 26.05.2015

  • Методика определения многочлена Гегенбауэра. Специфические особенности использования неванлинновских характеристических уравнений для нахождения дельта-субгармонических функций. Алгоритм разложения в ряд Тейлора выражения с центром в нуле функции.

    статья, добавлен 30.10.2016

  • Логарифмическая производная функции. Производная степенно показательной функции. Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано. Теоремы о дифференцируемых функциях. Формулы разложения элементарных функций.

    контрольная работа, добавлен 26.05.2014

  • Общее понятие о степенных функциях, их свойства и основные черты. Разновидности графиков степенных функций: прямая, парабола, кубическая парабола, гипербола. Особенности функций с четным и нечетным числом. Преобразования графиков степенных функций.

    презентация, добавлен 02.03.2012

  • Понятие и характерные свойства функционально полных систем булевых функций как совокупности таких функций (f1, f2,… fk), что произвольная булева функция f может быть записана в виде формулы через функции этой совокупности. Принцип ее двойственности.

    реферат, добавлен 30.11.2014

  • Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.

    курсовая работа, добавлен 09.03.2012

  • Теорема о непрерывности производных недифференцируемых функций. Определение координат в окрестности точки. Частные приращения по переменной и образованной от существующих пределов. Понятие дифференцируемости и производной сложной формулы двух аргументов.

    лекция, добавлен 26.01.2014

  • Оценка основных понятий функциональной зависимости. Дифференциальное исчисление функций одной переменной. Характеристика неопределенных интегралов, исследование функций. Понятие кратного интеграла. Определение особенностей дифференциальных уравнений.

    курс лекций, добавлен 20.08.2017

  • Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.

    шпаргалка, добавлен 12.01.2013

  • Определение несобственного интеграла с бесконечными пределами. Оценка признаков сравнения функций. Мера ограниченной замкнутой области. Интегралы от неограниченных функций. Интегрирование неравенств фигуры и точки. Изучение свойств двойного интеграла.

    лекция, добавлен 17.01.2014

  • Биография Пифагора. Неалгебраические доказательства теоремы. Древнекитайское, древнеиндийское доказательство. Доказательство Евклида. Алгебраические доказательства теоремы. Первое и второе доказательство. Определение косинуса угла. Головоломка "Пифагор".

    реферат, добавлен 30.01.2016

  • Связь корреляционно-иммунных булевых функций с кодами и ортогональными массивами. Линейные и квазилинейные переменные. Оптимизация неравенства Зигенталера для каждой отдельной переменной. Теорема для регулярных функций типа теоремы Симона-Вегенера.

    научная работа, добавлен 15.09.2012

  • Возникновение дифференциальной геометрии. Доказательство теорем о пределах. Исследование функции на экстремумы, свойства непрерывных функций и производные. Теоремы о дифференцируемых функциях. Биографии ученых, внёсших вклад в развитие дифференциалов.

    курсовая работа, добавлен 11.02.2010

  • Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.

    шпаргалка, добавлен 10.03.2014

  • Формализация описания конечного автомата (граф, таблицы переходов и выходов). Формирование функций выходов и функций возбуждения памяти автомата. Минимизация функций выходов и функций возбуждения памяти автомата, отображение результатов на картах Карно.

    контрольная работа, добавлен 01.01.2013

  • Доказательство теоремы о селекциях многозначных отображений ограниченной вариации на вещественной прямой со значениями в метрическом пространстве. Использование признака компактности Арцела-Асколи в пространстве непрерывных функций в теоремах Гермеса.

    контрольная работа, добавлен 27.08.2016

  • Математический поиск пределов функций. Расчет асимптот, промежутков возрастания и убывания, максимумов и минимумов, направлений выпуклости и перегибов графика. Использование формул правил дифференцирования и таблицы производных элементарных функций.

    контрольная работа, добавлен 22.05.2014

  • Обоснование непрерывность элементарных функций для точки, у которой малые изменения аргумента приводят к малым изменениям математического значения. Анализ формулы гиперболических значений. Обзор сложной и обратной функций, а так же точек их разрыва.

    лекция, добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.