Линейные однородные дифференциальные уравнения

Общие сведения о системах дифференциальных уравнений. Критерий линейной независимости, определитель Вронского. Метод сведения к одному уравнению более высокого порядка. Решение видоизмененным методом Эйлера и способом неопределенных коэффициентов.

Подобные документы

  • Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.

    курс лекций, добавлен 26.08.2015

  • Шаги, совершаемые при сведении простого уравнения к эквивалентному, основанные на использовании четырех аксиом. Линейные однородные уравнения и их основные свойства, корни действительные и различные. Линейные уравнения высших порядков, их параметры.

    реферат, добавлен 21.08.2017

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Запись дифференциальных уравнений в стандартной и операторной форме. Особенности передаточной и частотной функции звена, его временные и частотные характеристики. Специфика позиционных и интегрирующих звеньев. Их уравнения и расчет коэффициентов.

    курсовая работа, добавлен 22.04.2011

  • Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.

    курсовая работа, добавлен 13.12.2016

  • Решение нелинейных уравнений методом касательных. Интерполирование функции и полиномы Ньютона. Численное интегрирование, метод левых, правых и средних прямоугольников. Приближенное решение обыкновенных дифференциальных уравнений первого порядка.

    курсовая работа, добавлен 17.04.2014

  • Дифференциальные уравнения первого порядка. Метод изоклин как метод приближенного решения задачи Коши. Использование метода изоклин как инструмента исследования поведения решений. Изображение областей характерного поведения интегральных кривых.

    статья, добавлен 13.02.2017

  • Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.

    презентация, добавлен 27.05.2014

  • Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Построение фазового портрета поведения кривых однородной системы линейных дифференциальных уравнений первого порядка с постоянными коэффициентами на плоскости.

    реферат, добавлен 29.11.2015

  • Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.

    статья, добавлен 30.09.2012

  • Основные дифференциальные уравнения дистилляции, локальные топологические свойства. Анализ корней характеристической задачи. Линейные системы дифференциальных уравнений и их решение. Нелокальные закономерности диаграмм фазового равновесия жидкость-пар.

    автореферат, добавлен 26.03.2014

  • Варианты параллельной системы вычислений при решении систем дифференциальных уравнений первого порядка с нечеткими условиями. Анализ метода, предложенного Обергуггенбергером и Пицманом в статье "Дифференциальные уравнения с нечеткими параметрами".

    статья, добавлен 27.02.2019

  • Наибольшее и наименьшее значение функции. Поиск неопределенных интегралов, проверка правильности результата с помощью дифференцирования. Изменение порядка интегрирования в двойном интеграле. Решение системы дифференциальных уравнений операционным методом.

    контрольная работа, добавлен 19.03.2012

  • Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.

    курсовая работа, добавлен 16.12.2014

  • Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.

    лекция, добавлен 17.01.2015

  • Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.

    учебное пособие, добавлен 16.05.2010

  • Определение сплайнов и их пространство. Единичная функция Хевисайда. Базисные, нормализованные и кубические сплайны. Значение метода коллокации. Линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

    курсовая работа, добавлен 20.01.2013

  • Задачи, приводящие к уравнениям гиперболического типа (колебания струны). Методы решения дифференциальных уравнений гиперболического типа. Дифференциальные уравнения параболического типа. Вывод уравнения дифракции излучения на сферической частице.

    дипломная работа, добавлен 27.02.2020

  • Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.

    курсовая работа, добавлен 04.12.2018

  • Понятие линейного уравнения, его типы и формы. Сущность и математическое обоснование определителей второго порядка. Порядок и правила решения систем двух линейных уравнений с двумя переменными с помощью определителей. Использование закона Крамера.

    конспект урока, добавлен 07.04.2014

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.

    учебное пособие, добавлен 30.09.2014

  • Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.

    контрольная работа, добавлен 07.06.2013

  • Решение задачи Коши для жестких систем дифференциальных уравнений. Исследование (m,к)-методов решения жестких задач, в которых на каждом шаге два раза вычисляется часть системы дифференциальных уравнений. Построение (4,2)-метода максимального порядка.

    статья, добавлен 31.05.2013

  • Решение обыкновенных дифференциальных уравнений с заданными условиями на границах интервала и в заданных точках. Метод конечных разностей. Геометрический смысл производной. Метод прогонки, реализующий прямой и обратный ход. Выравнивание системы в столбец.

    лекция, добавлен 06.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.