Диференціальні рівняння першого порядку, не розв’язанні відносно похідної
Основні поняття та означення диференціального рівняння першого порядку, теорема про достатні умови існування та єдності розв’язку. Знаходження кривих, підозрілих на особливий розв’язок. Загальний метод введення параметра. Розв’язок неповних рівнянь.
Подобные документы
Визначення поняття логарифмічного рівняння. Основна логарифмічна тотожність. Приклади логарифмічних рівнянь. Властивості логарифмів та найпростіші рівняння. Методи розв’язання рівнянь: за означенням, за властивостями логарифма та графічний метод.
разработка урока, добавлен 13.11.2015- 27. Чисельні методі
Розв’язок рівнянь в програмному середовищі Maple. Аналіз особливостей розв’язання диференційних рівнянь і побудови графіків. Характеристика метода Гауса. Розв’язання рівняння за допомогою Метода Ейлера та Рунге-Кута. Отримання дійсних коренів рівняння.
контрольная работа, добавлен 28.04.2021 Дослідження асимптотичних властивостей розв’язків істотно нелінійних диференціальних рівнянь другого порядку з нелінійностями. Розробка асимптотичних зображень для підмножин класу розв’язків. Дослідження розв’язків різницевого рівняння Емдена-Фаулера.
автореферат, добавлен 14.08.2015Аналіз умов моделювання розв’язків загальної крайової задачі для лінійного неоднорідного гіперболічного рівняння другого порядку. Методика формульовання теореми існування розв’язку загальних крайових періодичних задач. Побудова наближених розв’язків.
статья, добавлен 29.07.2016- 30. Багатоточкові задачі для гіперболічних рівнянь та рівнянь, не розв’язаних відносно старшої похідної
Дослідження розв’язності багатоточкових задач для лінійних рівнянь з частинними похідними зі змінними коефіцієнтами. Характеристика метричних тверджень про оцінки знизу малих знаменників, які виникають при побудові розв'язків розглядуваних задач.
автореферат, добавлен 12.07.2014 Встановлення існування та єдності класичного розв’язку оберненої задачі для параболічного рівняння з виродженням, коли невідомий залежний від часу старший коефіцієнт прямує до нуля. Знаходження умов коректної розв’язності оберненої параболічної задачі.
автореферат, добавлен 29.09.2014Дослідження встановлення достатніх умов існування нетривіального розв'язку з наперед заданою кількістю нулів що прямує до нуля на нескінченності для нелінійного сингулярного крайового диференціального рівняння другого порядку досить загального вигляду.
автореферат, добавлен 07.08.2014Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.
автореферат, добавлен 28.07.2014Метод нерівноважних кластерних розкладів побудови розв'язку ланцюжка рівнянь Боголюбова на випадок квантових систем частинок. Доведення теореми існування та єдиності кумулянтного зображення розв'язку початкової задачі ланцюжка рівнянь квантових систем.
автореферат, добавлен 25.02.2015Встановлення умов існування та єдиності локального та глобального узагальнених розв'язків гіперболічних задач Стефана для систем рівнянь першого порядку з двома незалежними змінними. Удосконалення теорії диференціальних рівнянь з частинними похідними.
автореферат, добавлен 28.10.2015Встановлення умов і вигляду розв'язку асимптотичної задачі для еволюційного рівняння з неоднорідною частиною у вигляді многочлена та розв'язності деяких обернених (багатоточкових) задач для рівняння з параметрами у рефлексивному банаховому просторі.
автореферат, добавлен 28.06.2014Умови існування та єдиності розв'язків мішаних задач та задач без початкових умов для деяких типів еволюційних рівнянь та систем. Існування та єдиність розв'язків для нелінійних ультрапараболічних рівнянь в необмежених за просторовими змінними областях.
автореферат, добавлен 15.07.2014Розробка коректного розв'язку двоточкової крайової задачі про відшукання періодичного розв'язку параболічного рівняння вищого порядку з імпульсною дією. Методика постановки задачі Коші для параболічного псевдодиференціального рівняння вищого порядку.
автореферат, добавлен 26.08.2015"Простіші" рівнянь з параметрами (лінійні многочлени відносно невідомої величини і параметра). Ілюстрація того факту, що схожі за виглядом рівняння, які містять параметр і знак модуля, є досить складними і не можуть розв’язуватися однаковими способами.
статья, добавлен 06.03.2019- 40. Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
автореферат, добавлен 28.09.2015 Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.
лекция, добавлен 08.08.2014Новий метод розв’язування кубічного алгебраїчного рівняння. Розрахунок рівнянь, розміщених на комплексній площині, що позначають вершини рівностороннього трикутника. Перетворення вигляду рівняння, якщо умова не виконується і всі корені рівняння різні.
лекция, добавлен 24.01.2014Знайомство з властивостями розв’язків вироджених диференціальних рівнянь вищих порядків з обмеженнями на резольвенту поліноміального жмутка операторів. Аналіз підпростору розв’язків задачі Коші для виродженого диференціального рівняння вищого порядку.
автореферат, добавлен 28.12.2015- 44. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
статья, добавлен 25.03.2016 Порядок розв’язання системи нормальних рівнянь за способом Гауса (повна та скорочена схема), Краков’янів, Коші та наближень. Приклади обчислення суми [pv^2] в параметричному способі. Необхідні контролі при розв’язанні системи нормальних рівнянь.
презентация, добавлен 21.03.2014Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012Двостороння оцінка максимуму розв’язку задачі Неймана у необмежених областях, що "звужуються на нескінченності" для параболічного рівняння, що вироджується з абсорбцією. Поведінка розв’язку мішаної задачі для рівняння в залежності від геометрії області.
автореферат, добавлен 26.08.2015Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Отримання необхідних і достатніх умов, при виконанні яких різницеве рівняння з неперервним аргументом має єдиний інтегровний зі степенем Р (обмежений) розв'язок для спеціального класу "вхідних" функцій. Властивості розв’язання різницевого рівняння.
статья, добавлен 04.02.2017Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
лекция, добавлен 13.09.2010