О методологии везения и теории вероятности
Эволюция представлений о везении как вероятности наступления события, философская категория фортуны. Оценка вероятности благоприятного события и его изменение во времени. Г. Гардано, Пьер де Ферма и Блеиз Паскаль как основоположники теории вероятностей.
Подобные документы
Определение вероятности по формулам Бернулли и Байеса. Проведение исследования интегрального закона распределения. Вычисление математического ожидания, дисперсии и среднеквадратического отклонения. Особенность построения статистического разделения.
контрольная работа, добавлен 24.05.2016Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.
статья, добавлен 12.08.2020События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.
курсовая работа, добавлен 21.11.2012Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
методичка, добавлен 27.05.2016Определение вероятности события по классической формуле. Расчет вероятности гипотез по формуле Байеса. Составление закона распределения. Нахождение математического ожидания, дисперсии и среднеквадратического отклонения. Вычисление асимметрии и эксцесса.
задача, добавлен 28.02.2015Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015Основное положение теории вероятности – науки, занимающейся изучением закономерностей массовых случайных явлений. Возможные результаты единичной операции, или испытания. Основные категории теории вероятности. Описание пространства элементарных событий.
реферат, добавлен 16.06.2015Вычисление математической вероятности, нахождение независимых событий по теореме умножения вероятностей. Определение возможной вероятности того, что ни один из трех станков не потребует внимания рабочего, расчет вероятности поломки для каждого станка.
задача, добавлен 13.10.2014Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.
учебное пособие, добавлен 24.11.2014Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.
методичка, добавлен 16.05.2016Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.
контрольная работа, добавлен 25.05.2015Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.
курс лекций, добавлен 08.04.2015Ферма и Паскаль - основатели математической теории вероятностей. Изобретение Паскалем арифметической машины. Введение Гюйгенсом понятия математического ожидания. Применение теории вероятностей в различных областях. Зарождение "статистической физики".
статья, добавлен 25.07.2018Пьер де Ферма - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел, оптики, исчислении бесконечно малых величин. Краткая биография математика. Формулировка Великой теоремы Ферма.
презентация, добавлен 01.04.2012Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.
дипломная работа, добавлен 27.09.2012Определение вероятности случайного события. Вероятность использования кредита не по назначению среди выборки заемщиков. Закон распределения числа бракованных деталей. Графическое решение распределения случайной величины. Группировка статистического ряда.
контрольная работа, добавлен 19.01.2015Решение задач по теме теории вероятности с предоставлением необходимых формул. Результаты наблюдений над случайной величиной и примеры решения задачи на графике. Нахождение середины интервалов и вероятности с использованием таблицы и построением графика.
контрольная работа, добавлен 24.05.2016Рассмотрение расшифровки урновой схемы. Особенности определения геометрической вероятности. Исследование принципов применения формулы Бернулли в теории вероятности. Характеристика предельных значений вероятностей событий, интегральной теоремы Лапласа.
контрольная работа, добавлен 26.05.2015Предмет и понятия теории вероятностей. Относительная частота случайного события и ее устойчивость. Теорема умножения и сложения вероятностей. Основные понятия и методы математической статистики. Генеральная совокупность и выборка. Вариационный ряд.
учебное пособие, добавлен 24.06.2014Порядок расчета вероятностей событий с использованием классической формулы. Процесс решение задач для выражения события В через все события А. Определение вероятности того что взятая деталь окажется стандартной. Использование формулы Бейеса и Пуассона.
контрольная работа, добавлен 13.02.2013Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
задача, добавлен 05.05.2015Возникновение понятия и основное положение теории вероятности. Случайное событие и примеры разно возможных событий. Абстракция событий и определение случайной величины. Закон распределения вероятности дискретных и непрерывных случайных величин.
контрольная работа, добавлен 12.12.2012Численное выражение возможности наступления какого-либо события. Классическое определение вероятности. Понятие объема совокупности (выборочной или генеральной). Комплексная оценка параметров генеральной совокупности. Среднее квадратическое отклонение.
лекция, добавлен 25.12.2013Рассмотрение интересных закономерностей в возникновении случайного события. Изучение теорем сложения вероятностей. Как работает закон равномерной плотности вероятности. Приведение примеров случайных величин. Обоснование функции распределения, ее свойства.
реферат, добавлен 04.02.2010Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019