Комплексні числа

Піднесення комплексного числа до цілого додатного степеня за допомогою формули бінома Ньютона. Закономірності та головні етапи добування кореня з комплексного числа. Умови рівності двох комплексних чисел, а також вимоги до їхніх модулів і аргументів.

Подобные документы

  • История возникновения математической константы, выражающей отношение длины окружности к ее диаметру, ее значение для науки. Понятие геометрического и классического периода вычисления числа пи. Сущность формул Ф. Виета, Д. Валлиса, Д. Мэчина и Л. Эйлера.

    презентация, добавлен 24.02.2015

  • Формула нахождения очень больших простых чисел. Алгоритмы разложение больших чисел на простые множители. Вычисление ряда чисел Фибоначчи. Числовой код треугольника Паскаля. Простые числа как основа защиты электронной коммерции и электронной почты.

    статья, добавлен 03.03.2018

  • Исследование неоднородности свойств чётных составных чисел. Универсальное правило определения делимости. Содержание алгоритма нахождения простых чисел. Суммирование и вычитание цифр. Способы определения делимости нечетного числа с окончаниями 1, 3, 7.

    реферат, добавлен 29.09.2012

  • Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.

    курсовая работа, добавлен 26.12.2011

  • Цель работы – проанализировать натуральные числа с математической, философской, магической точек зрения. Частота появления натуральных чисел в математических задачах, головоломках, в различных литературных жанрах. Различные способы счета в древности.

    реферат, добавлен 14.03.2022

  • Общая характеристика простых и составных чисел; необходимость ознакомления учеников с таблицей простых чисел. Ключевые этапы урока. Ключевые отличия составных и простых чисел. Основные вопросы, помогающие ученикам скорее закрепить изученный материал.

    контрольная работа, добавлен 17.04.2012

  • Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.

    презентация, добавлен 14.02.2016

  • Определение количества единиц каждого класса и разряда многозначных чисел. Изучение алгоритма чтения многозначных чисел, способы переделать неправильные равенства в правильные, переставляя только одну палочку. Рассмотрение правила умножения числа.

    разработка урока, добавлен 08.04.2020

  • Определение вероятности того, что среди шести взятых одновременно деталей три окажутся первого вида. Проведение расчета вероятного числа студентов, родившихся 1 мая. Особенности применения полиноминальной схемы. Анализ закона распределения числа.

    задача, добавлен 07.11.2013

  • Отношение делимости в кольце целых чисел, их свойства. Алгоритм Евклида как метод нахождения НОД(a,b), основанный на 2х леммах. Взаимно простые числа. Наименьшее общее кратное. Основная теорема арифметики. Непозиционные и позиционные системы счисления.

    реферат, добавлен 13.01.2014

  • Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.

    книга, добавлен 25.11.2013

  • Характеристика классической задачи разложения целого числа в произведение его простых делителей. Исследование экспоненциального роста размерности пространства состояний с ростом числа квантовых частиц. Преимущества использования квантовых компьютеров.

    статья, добавлен 21.06.2018

  • Аналіз історії виникнення основної проблеми ірраціонального числа. Доцільні суми як нескінченні десяткові періодичні дроби. Модуль числової дійсності та його властивості. Особливості геометричного змісту величини повноважного чисельного результату.

    курсовая работа, добавлен 28.01.2016

  • Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.

    разработка урока, добавлен 20.09.2019

  • Построение множества комплексных чисел. Рассмотрение прямоугольной (декартовой) системы координат на плоскости. Операции сложения и умножения с векторами. Комплексные функции действительного аргумента. Вычитание равенств чисел из формулы Эйлера.

    лекция, добавлен 09.07.2015

  • Часы, или современный взгляд на тригонометрию. Теорема косинусов и синусов. Направленные отрезки и векторы, вычитание и умножение на число. Формула вспомогательного угла, или сложение колебаний равной частоты. Модуль и аргумент комплексного числа.

    учебное пособие, добавлен 28.12.2013

  • "Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".

    доклад, добавлен 31.01.2018

  • История возникновения и развития отрицательных чисел в математической науке, особенности их применения в торговых расчетах и физике, их основные функции. Решение арифметических задач с помощью отрицательных чисел, построение уравнений с одним неизвестным.

    презентация, добавлен 12.04.2016

  • Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.

    курсовая работа, добавлен 22.01.2015

  • Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.

    творческая работа, добавлен 26.04.2019

  • История возникновения комплексных чисел, их утверждение в математике. Геометрическое изображение комплексных чисел, их тригонометрическая форма. Действия с числами: сложение, вычитание, умножение и деление. Решение уравнений с комплексными переменными.

    реферат, добавлен 29.08.2014

  • Рассматривается специальная задача об эргономичном размещении конечного числа символов по конечному числу ячеек. Решение задачи применяется для более удобного размещения английских и русских букв на клавиатуре мобильного телефона.

    статья, добавлен 10.11.2015

  • Системы линейных уравнений и матрицы. Действия с комплексными числами. Смежные классы и теорема Лангранжа. Тригонометрическая форма комплексного числа. Понятия дискриминант и результант. Многочлены и ряды от переменной. Описание кольца степенных рядов.

    курс лекций, добавлен 28.12.2013

  • Алгебра дуальных чисел. Операции сложения и вычитания для дуальных чисел. Разность параметров делимого и делителя. Основное свойство мультипликативности. Закон отображения области определения в область значений. Классическое определение дифференциала.

    разработка урока, добавлен 21.08.2017

  • Зарождение счета в древности. Появление систем счисления. Письменная нумерация у древних народов. История возникновения понятия натурального числа. Счет как основа арифметики. Натуральный ряд чисел. Функции натуральных чисел. История возникновения нуля.

    реферат, добавлен 29.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.