Проверка совместности системы уравнений

Матрица коэффициентов при неизвестных. Вычисление определителя и алгебраических дополнений. Скалярное произведение векторов. Уравнение прямой проходящей через точки. Разложение числителя и знаменателя дроби на множители. Нахождение производных функций.

Подобные документы

  • Вычисление неопределенных и определенных интегралов, проверка результатов дифференцированием. Определение площади фигуры, ограниченной параболой и прямой. Дифференциальное исчисление функций нескольких переменных. Примеры решений системы уравнения.

    контрольная работа, добавлен 16.04.2012

  • Системы линейных дифференциальных уравнений. Выпуклое и нелинейное программирование. Корни характеристического многочлена. Совокупность серий для всех собственных чисел матрицы. Метод неопределенных коэффициентов. Неподвижные точки и отображения.

    учебное пособие, добавлен 26.04.2014

  • Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.

    контрольная работа, добавлен 26.07.2009

  • Аналитические методы решения уравнений математической физики в частных производных. Численные методы решения уравнений матфизики. Дискретизация расчетной области, формирование матрицы неизвестных температур системы линейных уравнений, построение изотерм.

    курсовая работа, добавлен 01.04.2022

  • Вычисление скалярного, векторного и неопределенного произведения. Вектор антисимметричного тензора. Разложение диадика. Нахождение главных значений и направлений главных осей. Получение кубического уравнения. Система трехлинейных однородных уравнений.

    контрольная работа, добавлен 11.04.2017

  • Понятие и структура матрицы второго порядка, принципы и порядок ее формирования, отличительные черты от матрицы третьего порядка. Сущность и характерные свойства определителей. Методика вычисления определителя i-го порядка. Применение метода Крамера.

    лекция, добавлен 12.03.2013

  • Скалярное произведение векторов и его использование в решении пространственных задач. Применение основных векторных соотношений к решению стереометрических задач. Основные векторные и координатные формулы, связанные со скалярным произведением векторов.

    курсовая работа, добавлен 26.02.2013

  • Решение уравнений и систем в различных кольцах и полях как классическая задача алгебры и теории чисел. Алгоритмы решения полиномиальных уравнений и систем в полях алгебраических чисел, основанные на лемме о подъеме решения полиномиального сравнения.

    статья, добавлен 18.01.2021

  • Основные методы, использующие информацию о производных при поиске точки минимума: метод средней точки, хорд, касательных Ньютона, кубической аппроксимации. Их краткое описание, примеры выведения уравнений, коэффициентов функций и координат точек.

    презентация, добавлен 09.07.2015

  • Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.

    учебное пособие, добавлен 17.04.2013

  • Получение концепции алгебраических уравнений, удовлетворяющих коэффициенты. Рассмотрение особенностей интегральных задач Фредгольма. Характеристика использования симметричности ядра при решении заданий. Вычисление функций о собственных колебаниях систем.

    курсовая работа, добавлен 13.01.2017

  • Построение графиков функции спроса и предложения, вычисление производных и приближенного значения числа через дифференциал функции. Определение экстремума, выгнутостей и вогнутостей функции. Вычисление интегралов и неоднородных линейных уравнений.

    контрольная работа, добавлен 16.04.2010

  • Особенность проведения линейных операций над матрицами. Линейно-зависимые и линейно-независимые ряды моделей. Характеристика вычисления вектор-столбцов. Исследование алгебраических дополнений и миноров. Основные свойства определителя n-го порядка.

    лекция, добавлен 17.05.2017

  • Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.

    курс лекций, добавлен 24.04.2009

  • Скалярные и векторные величины, линейные операции над ними в координатной форме, координатный базис, правило паралеллограма. Скалярное произведение векторов, их разложение по ортам в пространстве. Сонаправленные и противоположные колинеарные вектора.

    методичка, добавлен 01.02.2013

  • Системы линейных алгебраических уравнений. Метод Гаусса, Зейделя. Сравнение прямых и итерационных методов. Решения систем линейных уравнений по методу Гаусса, Зейделя. Схема единственного деления. Приведение системы к виду, удобному для итераций.

    контрольная работа, добавлен 06.09.2008

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.

    контрольная работа, добавлен 12.10.2016

  • Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.

    монография, добавлен 18.05.2015

  • Источники и классификация погрешности. Прямые и итерационные методы решения систем линейных алгебраических уравнений. Вычисление собственных значений и собственных векторов матриц. Методы решения полной и частичной проблемы собственных значений.

    учебное пособие, добавлен 15.11.2016

  • Сущность и структура линейных уравнений, их разновидности и свойства. Критерий совместности системы линейных уравнений, исследование теоремы Кронекера-Капелли. Метод Гаусса: содержание и назначение, сферы применения. Свойство свободных переменных.

    лекция, добавлен 26.03.2012

  • Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.

    контрольная работа, добавлен 27.11.2015

  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад, добавлен 29.04.2021

  • Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.

    лекция, добавлен 29.09.2014

  • Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.

    контрольная работа, добавлен 07.11.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.