Высшая математика

Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

Подобные документы

  • Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.

    контрольная работа, добавлен 25.08.2015

  • Нахождение обратной матрицы с помощью правила умножения матриц. Решение системы линейных уравнений с тремя неизвестными методом Крамера. Вычисление координаты точки пересечения медиан, длины высоты, опущенной из вершины, площади заданного треугольника.

    контрольная работа, добавлен 09.02.2015

  • Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.

    контрольная работа, добавлен 23.06.2020

  • Основные понятия матрицы: элементы, линейные матричные операции. Условие совместности системы линейных уравнений. Метод последовательного исключения переменных Гаусса — применение и модификации, достоинства, устойчивость. Неоптимальность метода Крамера.

    презентация, добавлен 11.12.2013

  • Использование метода неопределенных коэффициентов для нахождения значений. Решение задачи, приводящей к понятию определенного интеграла. Определенный интеграл как предел интегральной суммы. Рассмотрение способов вычисления определенного интеграла.

    контрольная работа, добавлен 09.04.2018

  • Векторная алгебра и кривые второго порядка. Аналитическая геометрия в пространстве. Определенный интеграл и его геометрические приложения. Обобщение понятия определенного интеграла. Функции нескольких переменных. Двойные и несобственные интегралы.

    учебное пособие, добавлен 03.10.2012

  • Изучение математики в определениях и терминах. Решение геометрии, механики и теоретической физики с абсолютной точностью. Арифметика рациональных чисел. Дифференциальное исчисление. Обоснование понятий и объектов математики как число, точка, прямая.

    статья, добавлен 26.01.2019

  • Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.

    лекция, добавлен 18.03.2015

  • Определители второго, третьего и четвертого порядка, их свойства и методы вычисления. Операции над матрицами и их особенности. Понятие ранга матрицы, правило Крамера. Матричный метод решения систем, пределы и непрерывность функций. Дифференциал функции.

    учебное пособие, добавлен 28.08.2017

  • Введение, математическое обоснование и анализ задачи. Методы вычисления определенного интеграла: метод трапеций, метод средних прямоугольников. Составление алгоритма работы программы integral.pas. Результат работы написанной и откомпилированной программы.

    контрольная работа, добавлен 30.10.2010

  • Понятие и виды матриц, их применение в математике. Алгебраические операции, выполняемые с матрицами. Системы линейных уравнений. Условие разрешимости системы линейных уравнений на языке матриц. Примеры элементарных преобразований матриц, ранг матрицы.

    реферат, добавлен 30.01.2016

  • Изучение понятия и видов матрицы, рассмотрение алгоритма решения систем линейных уравнений в матричной форме. Исследование свойств пределов функций и примеров их нахождения. Характеристика основных задач, инструментов и методов аналитической геометрии.

    реферат, добавлен 02.06.2014

  • Изучение сущности определенного интеграла – средства исследования в математике, физике, механике. Определение площади криволинейной трапеции. Ознакомление с функциями определенного интеграла. Рассмотрение геометрического смысла определенного интеграла.

    контрольная работа, добавлен 17.01.2015

  • Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.

    методичка, добавлен 26.09.2016

  • Доказательство формулы для определителя Грама и Леммы Накаямы. Решение системы линейных уравнений с ненулевым определителем основной матрицы. Ее запись в матричном виде. Реализация метода Крамера со сложностью, сравнимой со сложностью метода Гаусса.

    доклад, добавлен 11.12.2017

  • Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.

    реферат, добавлен 16.03.2012

  • Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.

    курсовая работа, добавлен 17.11.2019

  • Понятие матрицы и ее виды. Определители 2-го и 3-го порядков. Совместимость систем линейных алгебраических уравнений. Теорема Кронекера-Капелли. Использование систем линейных уравнений при решении экономических задач. Производные функции, их применение.

    учебное пособие, добавлен 02.02.2012

  • Ознакомление с действиями над матрицами. Рассмотрение и характеристика свойств определителей (детерминант). Изучение сущности алгебраического дополнения минора матрицы. Анализ условий применения матричного метода решения систем линейных уравнений.

    контрольная работа, добавлен 12.10.2016

  • Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.

    контрольная работа, добавлен 07.11.2018

  • Перечень возможных математических действий с разными по свойствам матрицами. Пути решения систем линейных уравнений. Очерк основных понятий в векторной алгебре. Параметры и виды кривых на поверхности второго порядка. Свойства эквивалентных функций.

    курс лекций, добавлен 23.07.2015

  • Главные и свободные неизвестные, входящие в выбранный минор. Использование правила Крамера. Частное решение системы. Пример решения системы линейных уравнений. Применение метода Гаусса (последовательного исключения переменных). Сравнение рангов матриц.

    лекция, добавлен 26.01.2014

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

  • Знакомство с особенностями реализации программного обеспечения для решения системы линейных алгебраических уравнений методом квадратных корней. Рассмотрение способов применения методов спуска для решения систем нелинейных алгебраических уравнений.

    курсовая работа, добавлен 02.10.2013

  • Аналитическая геометрия. Основные положения линейной алгебры. Использование систем линейных уравнений при решении экономических задач. Функции и теоремы математического анализа. Основные методы интегрирования. Дифференциальные и разностные уравнения.

    учебное пособие, добавлен 12.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.