Усовершенствование метода ортогональной прогонки С.К. Годунова для решения краевых задач с жесткими обыкновенными дифференциальными уравнениями
Методика выполнения построчного ортонормирования матричного уравнения краевых условий на левом участке. Характеристика специфических особенностей осуществления замены метода численного интегрирования Рунге-Кутта в алгоритме прогонки С.К. Годунова.
Подобные документы
Краевая задача для уравнения эллиптического типа. Вариационные постановки основных эллиптических задач. Прямые методы вариационного исчисления. Неединственность решения дифференциальных уравнений. Граничное условие первого, второго и третьего рода.
курсовая работа, добавлен 08.10.2013Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Булирша-Штера с использованием рациональной экстраполяции для системы уравнений. Описание алгоритма главной программы, блок-схема. Подбор программного обеспечения.
контрольная работа, добавлен 19.02.2014Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Описание метода нахождения корня (нуля) заданной функции касательных. Исследование особенностей интерполяционного полинома Ньютона. Рассмотрение общих положений численного интегрирования. Характеристика случаев применения метода прямоугольников.
реферат, добавлен 08.08.2015Ознакомление с основными методами решения нелинейных уравнений. Исследование и характеристика специальных способов решения определенных интегралов: правых прямоугольников и трапеций. Рассмотрение и анализ особенностей методов Эйлера и Рунге-Кутта.
контрольная работа, добавлен 08.11.2015Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.
курсовая работа, добавлен 01.10.2012Основные положения численного интегрирования. Формулы левых, правых и средних прямоугольников. Метод статистических испытаний (метод Монте-Карло). Численное интегрирование методом прямоугольников. Алгебраический порядок точности численного метода.
курсовая работа, добавлен 08.02.2016Алгоритм нахождения корня уравнения с помощью численного метода. Геометрическая иллюстрация метода бисекций. Метод половинного деления. Проведение определения является ли функция непрерывной и принимает ли значения противоположных знаков на отрезке.
статья, добавлен 17.02.2019Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Исследование для параболического уравнения второго порядка (специального вида) краевой задачи, когда каждое равенство граничного условия однородно относительно параметра при замене производных. Последовательность решения некорректных краевых задач.
статья, добавлен 02.02.2019Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.
контрольная работа, добавлен 21.09.2016Изучение единственного решения для смешанных краевых задач с заданными начальными условиями. Ознакомление с обозначениями сеточной функции по переменной. Анализ геометрического места узлов функции в разностном уравнении с фиксированными алгоритмами.
презентация, добавлен 30.10.2013Нахождение двух наименьших положительных корней уравнения. Рассмотрение метода деления отрезка пополам. Описание программного алгоритма этого метода. Определение значения корней с необходимой точностью. Характеристика метода итераций, пример решения.
лабораторная работа, добавлен 24.11.2014Задача Коши для обыкновенного дифференциального уравнения. Одношаговые методы: Эйлера, Рунге-Кутты. Контроль точности получаемого численного решения. Дифференциальные уравнения с запаздывающим аргументом. Многошаговые методы Адамса-Бэшфортса-Моултона.
лекция, добавлен 17.01.2015Основные свойства неравенства Юнга, Гельдера и Минковского. Изучение теоремы Рериха, собственных значений и функций оператора Лапласа. Обобщенные решения краевых задач для уравнения Пуассона. Банаховы, метрические и линейные топологические пространства.
книга, добавлен 19.05.2011История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.
реферат, добавлен 12.07.2020Применение аналитических математических методов при моделировании процессов в науке и технике. Решение практических задач по баллистике методами Эйлера, Рунге-Кутта и Адамса. Учёт локальных особенностей искомой функции дифференциального уравнения.
лекция, добавлен 21.09.2017Разработка приближенных методов вычисления определенных интегралов. Классические методы численного интегрирования по квадратурным формулам - наиболее распространенные методы вычисления одномерных определенных интегралов. Сущность метода прямоугольников.
курсовая работа, добавлен 20.05.2013Вывод уравнения колебания струны. Формулировка краевых задач, граничные и начальные условия. Волновое уравнение, которое описывает процессы распространения упругих, звуковых, световых, электромагнитных волн, а также другие колебательные явления.
лекция, добавлен 18.11.2015Теоретический анализ глобальной разрешимости краевых задач для многомерных уравнений движения смесей вязких сжимаемых жидкостей в стационарном случае. Решение задачи об установившемся баротропном движении двухкомпонентной смеси вязких сжимаемых жидкостей.
автореферат, добавлен 17.12.2017Реализация членов уравнения в отдельности для упрощения построения аналитических и численных решений - сущность принципа расщепления. Особенности применения данной методики для решения двумерной задачи массопереноса при краевых условиях второго рода.
статья, добавлен 03.03.2018- 47. Численные методы
Понятие метода итерации как способа численного решения математических задач. Его основные цели и порядок применения. Значение интегрированного метода трапеции, процесс оценки абсолютной погрешности. Решение системы линейных уравнений методом Гаусса.
контрольная работа, добавлен 20.05.2013 Алгоритм обобщения итерационно-интерполяционного метода (ИИМ) для решения трехмерного волнового уравнения. Постановка задачи и метод построения разностной схемы. Устойчивость схемы ИИМ по начальным данным. Сходимость и примеры применения метода.
статья, добавлен 04.05.2016Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016- 50. Симплекс-метод
Алгоритм симплексного метода решения задач линейного программирования. Пример решения задачи симплексным методом. Вычисление оценки разложений векторов условий по базису опорного решения. Рассмотрение причин использования двухфазного симплекс-метода.
лекция, добавлен 28.03.2020