Простейший метод решения жёстких краевых задач
Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
Подобные документы
Две технологии программной реализации (параллельная, последовательная) алгоритмов приближенных решений краевых задач для обыкновенных дифференциальных уравнений. Сравнение последовательных и параллельных вычислений. Метод Галеркина и конечной разности.
статья, добавлен 02.02.2019Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.
курсовая работа, добавлен 26.02.2014Точные, итерационные и прямые методы решения систем линейных алгебраических уравнений. Реализация решения СЛАУ с помощью Microsoft Excel. Блок-схема и описание алгоритма. Программа на языке VBA. Результаты выполнения программы с заданной точностью.
контрольная работа, добавлен 08.04.2018Сущность и принципы использования метода Ньютона, его геометрическая интерпретация, примеры применения на практике, алгоритм решения задач. Механизм решения систем нелинейных алгебраических уравнений. Содержание и значение методов спуска и итерации.
реферат, добавлен 31.10.2013Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Обыкновенное дифференциальное уравнение как тождество, связывающее между собой значения независимой переменной, функции и её производных. Методика вычисления задачи Коши. Характеристика основных типов уравнений, которые допускают понижение порядка.
презентация, добавлен 05.02.2015Правила решения систем линейных алгебраических уравнений. Понятие ранга матрицы. Преобразования матрицы, в результате которых сохраняется их эквивалентность. Классический метод решения СЛАУ. Теорема об эквивалентности при элементарных преобразованиях.
контрольная работа, добавлен 16.01.2015Использование итерации в прикладной математике. Выполнение арифметических операций над переменными с плавающей точкой на компьютере. Преобразования матрицы чисел прямым и обратным ходом Гаусса. Решения линейных систем уравнений методом квадратного корня.
лабораторная работа, добавлен 21.03.2014- 64. Линейная алгебра
Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.
методичка, добавлен 29.12.2015 Решение дифференциального уравнения первого порядка методом Рунге-Кутты. Численные методы решения задачи Коши. Практическая оценка погрешности. Однотипные дифференциальные уравнения системы. Коэффициенты при постоянной. Применение правила Рунге.
лабораторная работа, добавлен 16.06.2014Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
задача, добавлен 28.10.2017Итерационные методы решения линейных алгебраических уравнений. Подчиненные и согласованные матричные нормы. Метод последовательной верхней релаксации. Ассимитотическая скорость сходимости. Обусловленность матриц и систем линейных алгебраических уравнений.
курсовая работа, добавлен 15.08.2017Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.
контрольная работа, добавлен 23.06.2020Постановка задачи в операторной форме. Анализ её решения в виде линейной комбинации координатных функций. Изучение способов нахождения коэффициентов в каждом из рассматриваемых проекционных методов. Решение системы линейных алгебраических уравнений.
методичка, добавлен 13.09.2015Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.
контрольная работа, добавлен 06.06.2015Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.
реферат, добавлен 02.02.2022Рассмотрение принципов решения систем линейных уравнений. Обзор матричного метода, описанного И.К.Ф. Гауссом. Анализ его достоинств. Способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем методом Г. Крамера.
презентация, добавлен 23.12.2016Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
реферат, добавлен 06.03.2023