Элементы теории вероятностей

Вероятность события. Комбинаторика. Правила сложения и умножения вероятностей. Зависимые и независимые события. Формулы полной вероятности и Байеса. Случайные величины и законы их распределения. Непрерывные случайные величины и законы их распределения.

Подобные документы

  • Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.

    реферат, добавлен 15.06.2010

  • Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

    лекция, добавлен 21.03.2018

  • Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.

    курсовая работа, добавлен 11.06.2020

  • Классическое определение вероятностей. Искомая вероятность указанного события. Противоположные и несовместные события. Теорема умножения независимых событий. Повторные независимые испытания. Использование интегральной предельной теоремы Лапласа.

    контрольная работа, добавлен 20.01.2013

  • Случайные величины, их понятие. Законы распределений и их характеристика. Биномиальное распределение (схема Бернулли). Дискретные случайные величины. Распределение Пуассона, геометрическое распределение. Числовые характеристики, математическое ожидание.

    презентация, добавлен 12.11.2017

  • Методы обработки результатов опытов и получение из них необходимых данных. Понятие и обозначение случайных величин. Определение суммарной вероятности возможных значений случайной величины, ее математическое ожидание. Функция распределения вероятностей.

    курсовая работа, добавлен 12.11.2012

  • Предмет и задачи теории вероятностей. Вероятности случайных событий, классический и геометрический способы их вычисления. Значения вероятности произвольного события. Гипотезы и независимые события. Последовательность независимых испытаний. Схема Бернулли.

    курс лекций, добавлен 21.12.2011

  • Теоретические аспекты понятия "случайное событие" и характеристика вспомогательных терминов. Вероятность происхождения события: ее свойства и частота, правила математических действий с нею, основные принципы использования вероятностных расчетов.

    реферат, добавлен 19.07.2010

  • Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.

    реферат, добавлен 12.12.2013

  • Рассмотрение основных типов соединений в комбинаторике. Теорема сложения вероятностей совместных событий. Рассмотрение функции распределения в теории вероятностей. Вариационные ряды и их характеристика. Свойства эмпирической функции распределения.

    реферат, добавлен 18.04.2016

  • Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.

    лекция, добавлен 30.11.2016

  • История развития теории вероятности. Понятия события, его главные свойства и порядок обозначения. Характеристика основных типов: невозможное и достоверное. Задачи, решаемые формулой Байеса, ее необходимые условия. Расчет полной вероятности события.

    реферат, добавлен 21.05.2013

  • Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.

    учебное пособие, добавлен 29.10.2013

  • Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.

    дипломная работа, добавлен 27.09.2012

  • Теория вероятности и математическая статистика. Основные категории: событие, вероятность, случайность. Теоремы сложения и умножения. Вероятность гипотез, формула Байеса. Независимые события. Биномиальное распределение. Редкие события, формула Пуассона.

    методичка, добавлен 21.10.2010

  • Случайные события и их классификация, понятие о вероятности события. Изучение операций над спонтанными явлениями, вероятности их суммы и произведения. Повторные независимые испытания, формула Бернулли. Случайная величина и её числовые характеристики.

    лекция, добавлен 25.01.2013

  • Формулы схемы Пуассона для нахождения вероятности события. Закон распределения случайной дискретной величины, построение функции распределения. Математическое ожидание, среднее квадратическое отклонение. Проверка гипотезы критерием хи-квадрата Пирсона.

    контрольная работа, добавлен 02.03.2017

  • Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.

    контрольная работа, добавлен 25.01.2015

  • Способы задания дискретной случайной величины. Изучение основных свойств функции распределения. Вероятность того, что непрерывная случайная величина примет одно определенное значение. Плотность распределения вероятностей непрерывной случайной величины.

    презентация, добавлен 08.12.2014

  • Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.

    методичка, добавлен 16.05.2016

  • Случайные величины, сконструированные на основе нормального распределения, которые наиболее часто встречаются в математической статистике. Распределение случайных величин в статистических таблицах. Функция распределения двумерной случайной величины.

    контрольная работа, добавлен 27.03.2022

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Определение закона распределения случайной величины. Нахождение плотности распределения, математического ожидания, дисперсии и среднего квадратического отклонения. Построение графиков дифференциальной и интегральной функций. Анализ вероятности события.

    контрольная работа, добавлен 14.12.2015

  • Функция распределения и плотность распределения системы двух случайных величин. Законы распределения отдельных компонент, входящих в систему. Зависимые и независимые случайные величины. Числовые характеристики системы нескольких случайных величин.

    лекция, добавлен 18.03.2014

  • Порядок расчета вероятности наступления того или иного события. Составление и исследование функция распределения. Вероятность попадания случайной величины в заданный интервал. Проведение расчетов полной вероятности события, анализ полученных результатов.

    контрольная работа, добавлен 30.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.