Золотое сечение в природе
Золотое сечение - иррациональное число, открытое древними греками. Существование числовой последовательности, известной как ряд Фибоначчи. Примеры спирального развития сегментов раковины. Пропорции различных частей человеческого тела, его золотое сечение.
Подобные документы
- 101. Число "е"
Анализ последовательности числа с общим членом, согласно формуле суммы бесконечно убывающей геометрической последовательности. Понятие функций одной переменной некоторых числовых множеств. Виды элементарных функций и их геометрическое содержание.
лекция, добавлен 29.09.2013 Биография Пифагора и его школа. Четно-нечетные числа как числа, которые будучи разделены пополам, не делятся. Таблица десяти чисел. Совершенное число как число, сумма дробных частей которого равна самому числу. Влияние пифагорейских гетерий на политику.
реферат, добавлен 06.03.2010Использование числовой прямой для введения понятия модуля, анализ его свойств при помощи координатной прямой. Примеры задач с модулем, построение графиков функций. Решение уравнений методом интервалов, способом возведения в квадрат и с помощью графиков.
курсовая работа, добавлен 03.09.2012- 104. Теоремы о пределах
Понятие предела функции. Определение предела числовой последовательности. Бесконечно малая и бесконечно большая величины. Предел последовательности и функции. Теорема предела частного. Определение предела функции по Гейне ("на языке последовательностей").
реферат, добавлен 28.11.2019 - 105. Длина дуги кривой
Пространственная кривая векторной функции. Расчет длины дуги полукубической параболы. Изучение функций скалярных уравнений. Объем тела по известной площади поперечного сечения. Изучение поверхности тела вращения. Периметры окружности и длина образующей.
лекция, добавлен 17.01.2014 Изучение теории возвратных последовательностей и возможное применение её части на факультативах в школьном курсе математики. Примеры возвратных задач. Вывод формул вычисления любого члена возвратной последовательности. Базис возвратного уравнения.
контрольная работа, добавлен 23.09.2009Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019- 108. Метод Монте-Карло
Характеристика численных методов в математических расчетах. Описания методов для решения различных задач с помощью случайных последовательностей. Обзор техники моделирования случайной последовательности чисел. Практическое применение метода Монте-Карло.
доклад, добавлен 21.03.2015 Суть метода нахождения обратных функций. Основные пути построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.
статья, добавлен 29.01.2019Определение и методы решения иррациональных уравнений. Преобразования, при которых уравнение переходит в равносильное уравнение. Решение уравнения возведением обеих его частей в квадрат или введением новой переменной. Использование искусственных приемов.
реферат, добавлен 06.03.2010Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.
курсовая работа, добавлен 10.07.2012Определение коэффициентов Фурье дискретной последовательности. Изменение фазового спектра при циклическом сдвиге отсчетов (инвариантный сдвиг). Примеры записи и вычисления коэффициентов Фурье для заданной последовательности, вычисление корней неравенства.
контрольная работа, добавлен 28.06.2016- 113. Золотые фигуры
Особенности построения золотого треугольника. Анализ прямоугольника, у которого отношение смежных сторон дает пропорцию Фидия. Спираль Фибоначчи как интерпретация арифметически невозможной спирали золотого сечения, у которой нет ни конца, ни начала.
реферат, добавлен 26.11.2012 - 114. Обыкновенные дроби
Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенные дроби в древней Руси и Древней Греции. История возникновения дробей. Применение дробей в повседневной жизни. Правильные и неправильные обыкновенные дроби.
реферат, добавлен 15.05.2023 Периодизация 6-уровневого развития математического знания при использовании психолого-гносеологических оснований отражения действительности в сознании человека. Изменение логики и математики по линии число-уравнение-функция-алгоритм-непредикативность.
статья, добавлен 26.04.2019Задача о числе счастливых билетов и формула Бинома Ньютона. Определение производящей функции. Восстановление элементов последовательностей по известным производящим функциям. Числа и многочлены Фибоначчи и Люка. Последовательность с двумя индексами.
курсовая работа, добавлен 13.05.2014Исследование и характеристика процесса становления теоретико-числового метода в приближенном анализе, как раздела теории чисел. Ознакомление с деятельностью Добровольского - представителя Тульской теоретико-числовой школы. Определение индекса Хирша.
статья, добавлен 22.01.2017История происхождения египетских дробей в математике. Применение форм записи, основанных на иероглифе глаз Гора. Исследование разложений с помощью алгоритма Фибоначчи. Характеристика современной теории чисел. Особенность изучения гипотезы Эрдеша-Страуса.
доклад, добавлен 30.11.2015- 119. Задача Фараона
Математический метод решения задачи Фараона. Иррациональное алгебраическое число, которое является корнем уравнения восьмой степени, как ответ задачи. Сведение задачи к нахождению положительного корня уравнения. Суть геометрического решения задачи.
задача, добавлен 27.03.2013 Рассмотрение симметрии в форме листьев и цветов растений, расположении различных органов животных, форме кристаллических тел. Описание симметрийных свойств с помощью математической теории групп. Сферическая симметрия тела в строительстве и технике.
реферат, добавлен 31.01.2017Определение основных понятий, связанных с отображениями. Предел числовой и ограниченной последовательности. Условие непрерывности функции. Краткая характеристика техники дифференцирования, особенности ее применения. Использование формулы Тейлора.
учебное пособие, добавлен 02.04.2013Рассмотрение принципов формирования целочисленных и дробных обобщенных числовых в последовательность. Ознакомление с тождествами Кассини чисел Фибоначчи. Исследование и характеристика методов обобщенных чисел приведения к тождеству типа Кассини.
статья, добавлен 24.01.2018Рассмотрение математики в античной Греции. Построение греками математики как целостной науки с собственной методологией, основанной на чётко сформулированных законах логики. Провозглашение о постижимости законов природы для человеческого разума.
реферат, добавлен 21.03.2012Основные этапы зарождения и развития чисел в человеческом обществе, оценка их роли и значения. Особенности численной системы племени майя, Древнего Египта, арабских и славянских народов. Число судьбы человека, его определение. Значение чисел по Пифагору.
презентация, добавлен 21.01.2013- 125. Исчезновение фигур
Парадокс с линиями: принцип скрытого перераспределения. Исчезновение и появление плоских фигур. Связь парадокса шахматной доски с парадоксом вертикальных линий. Варианты с прямоугольниками и квадратами. Числа Фибоначчи. Суммирование площадей фигур.
реферат, добавлен 18.01.2011