Применение интегральных уравнений Фредгольма в механических и физических явлениях
Получение концепции алгебраических уравнений, удовлетворяющих коэффициенты. Рассмотрение особенностей интегральных задач Фредгольма. Характеристика использования симметричности ядра при решении заданий. Вычисление функций о собственных колебаниях систем.
Подобные документы
Изучение трансцендентных уравнений, включающих алгебраические, тригонометрические и экспоненциальные функции. Характеристика точных и итерационных методов. Этапы нахождения корня уравнения итерационным способом. Применение метода половинного деления.
контрольная работа, добавлен 17.05.2019Задача для классического линейного гиперболического уравнения в прямоугольной характеристической области, ее решение с помощью редукции к системе уравнений Фредгольма второго рода, разрешимость которой устанавливается на основе метода априорных оценок.
статья, добавлен 31.05.2013Изучение квантильных дифференциальных уравнений Пфаффа, которые строятся на основе двухмерных условных квантилей многомерных вероятностных распределений. Исследование основных вероятностных свойств интегральных многообразий максимальной размерности.
статья, добавлен 31.05.2013Решение всякой количественной математической задачи и нахождение "решения" y по заданным исходным данным. Задача решения уравнения Фредгольма первого рода. Устойчивость эквивалентна непрерывности обратного оператора. Нормы всех членов последовательности.
реферат, добавлен 09.11.2017Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.
задача, добавлен 20.01.2014Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.
контрольная работа, добавлен 07.05.2009Графический метод решения уравнений (уравнение окружности, эллипса, гиперболы, кардиоида). Нахождение модуля, методы определения пределов и производных. Условия применений правила Лопиталя, вычисление экстремумов, монотонности. Расчет дифференциалов.
контрольная работа, добавлен 11.04.2009Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
контрольная работа, добавлен 09.07.2015Существование и единственность решения задачи для псевдопараболического и гиперболического уравнений четвертого порядка, когда условия склеивания задается на не характеристической линии. Сведение решаемой задачи к решению системы интегральных уравнений.
статья, добавлен 18.05.2016- 110. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 - 111. Численные методы
Понятие и типы погрешности: относительная и абсолютная, их определение. Численные методы решений трансцендентных и алгебраических уравнений. Сущность интегрирования. Решение начально-краевых задач для дифференциальных уравнений в частных производных.
учебное пособие, добавлен 02.05.2013 Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Описание метода Гаусса. Рассмотрение алгоритма на примере системы уравнений. Необходимое и достаточное условие применимости метода. Анализ прямого и обратного хода, построение схемы единственного деления. Контроль и точность вычислений в уравнениях.
реферат, добавлен 31.05.2009Изучение вопроса о том, при выполнении каких условий периодическая функция будет решением интегрального уравнения Вольтерра с периодическими коэффициентами. Характеристика применения принципа сжатых отображений и условия аналитичности заданных функций.
статья, добавлен 18.09.2018Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Задача Коши в разделе численных методов решения дифференциальных уравнений. Возможность применения переменного шага. Малая погрешность при решении методом Рунге-Кутта. Анализ причин получаемых неприятностей при численном решении конкретных задач.
статья, добавлен 26.10.2010Нестандартные приемы решения уравнений и неравенств, содержащих модуль, изучаемых на дополнительных занятиях и при решении олимпиадных задач. Типовые задания на решение уравнений и неравенств. Задания тестовых вариантов Единого Национального Тестирования.
дипломная работа, добавлен 12.11.2014Области прикладного применения систем компьютерной математики для численных и аналитических расчетов. Возможности программы Wolfram Mathematica. Примеры решения обыкновенных дифференциальных уравнений и геометрических задач в системе Wolfram Mathematica.
статья, добавлен 16.07.2018Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Сущность совместной системы уравнений. Признаки несовместной системы уравнений. Понятие эквивалентной системы уравнений. Элементарные преобразования системы. Гаусс Карл Фридрих как выдающийся немецкий математик. Решение уравнений методом Гаусса.
презентация, добавлен 14.01.2018Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Система, имеющая более чем одно решение (неопределенная). Метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида. Применение метода Крамера.
презентация, добавлен 23.08.2016Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.
презентация, добавлен 06.12.2011Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.
курсовая работа, добавлен 20.01.2013