Элементы логики. Множества и операции над ними. Понятие текстовой задачи и процесса ее решения. Натуральные числа и нуль
Понятие, элементы и виды множества. Круги Эйлера. Разбиение на части. Декартово произведение множеств. Число элементов в объединении и разности конечных множеств. Способы решения текстовой задачи. Аксиоматическое построение системы натуральных чисел.
Подобные документы
Характеристическое свойство - признак, которым обладает каждый элемент, принадлежащий множеству. Круги Эйлера - особые чертежи, при помощи которых наглядно представляют отношения между множествами. Изображение декартова произведения при помощи графа.
презентация, добавлен 20.12.2015Исторические аспекты становления комбинаторики и основные утверждения, касающиеся конечных множеств. Решение задач с помощью правил суммы и произведения, а также методом пересекающихся множеств, кругов Эйлера, размещением или перестановкой без повторений.
реферат, добавлен 15.11.2010Изучение комплексных чисел в рамках школьной математической программы. Описание правил сложения, вычитания и других действий. Вывод формул сокращенного умножения. Решение примеров с комплексными числами. Представление множества в виде кругов Эйлера.
реферат, добавлен 02.05.2019Изучение графического положения разности между последовательными простыми числами при стремлении простых чисел к бесконечности. Доказательство гипотезы Римана без использования комплексных чисел. Теорема Евдокса–Архимеда, Чебышева. Непустые множества.
статья, добавлен 03.03.2018Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.
реферат, добавлен 22.05.2017Появление первых арифметических и геометрических понятий. Возникновение и основные этапы эволюции счета: выработка эталона-множества символизирующего некое конкретное число (где, впервые возникает понятие числа); выработка наиболее удобных счетных систем.
реферат, добавлен 11.10.2011Описание соотношения эквивалентности и толерантности на примере различных типов низших растений (водорослей). Рассмотрение классов толерантности. Определения классов эквивалентности. Графическое представление решения задачи с помощью кругов Эйлера.
курсовая работа, добавлен 23.08.2014Теория графов как один из разделов дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Методика решения задач календарно-сетевого планирования и управления. Сущность алгоритма Форда-Фалкерсона.
лабораторная работа, добавлен 28.05.2015Роль числа в познании и конституировании мира. Число как основное понятие математики. Понятие натурального числа. Число как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере, соразмерного и гармоничного.
доклад, добавлен 11.01.2012- 85. Числовые системы
Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.
реферат, добавлен 29.10.2013 Любопытные свойства натуральных чисел, которые обнаруживаются при выполнении над ними арифметических действий. Сущность задачи о ростовщике представителя знаменитой швейцарской династии математиков Якоба Бернулли. Приметы и суеверия о числах 7 и 13.
доклад, добавлен 10.09.2014Построение множества решений систем линейных неравенств. Поиск координат их угловых точек. Получение графической модели решения стандартной математической задачи. Проверка оптимальности опорного плана. Анализ этапов составление платежных матриц.
задача, добавлен 12.01.2013Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.
реферат, добавлен 25.02.2016История возникновения математической логики. Основное содержание, формулы, элементы, символы. Таблицы истинности, логические функции, основные логические операции. Законы логики и упрощение логических выражений. Решения задач по математической логике.
реферат, добавлен 06.06.2012Определение процента (части) от числа. Определение числа по его части, выраженной в процентах. Процентное сравнение чисел (величин). Примеры изменения цены при повышении на 25 % и понижении на 25 %. Задачи на "усыхание" по теме "Смеси, сплавы, растворы".
презентация, добавлен 06.11.2014Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.
презентация, добавлен 27.01.2017Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).
статья, добавлен 26.04.2019Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.
контрольная работа, добавлен 29.03.2017Характерные признаки фрактальных множеств. Построение Канторова множества, снежинки Коха салфетки Серпинского при помощи L-систем. Визуализация "замощение треугольниками". Описание программного обеспечения "doLsys". Способы анимации фрактальных фигур.
дипломная работа, добавлен 29.10.2024Характеристика диаграммы Эйлера-Венна для пересечения двух множеств. Различие между арифметическим сложением и объединением. Методика определения локального коэффициента эмерджентности Хартли. Проблема оценки абсолютной величины системного эффекта.
статья, добавлен 27.04.2017Исследование задачи допустимого синтеза инерционных управлений. Получение оценок для производной функции управляемости и построение области разрешимости проекта. Особенность решения задания стабилизации. Основная характеристика нахождения траектории.
статья, добавлен 30.10.2016Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.
курсовая работа, добавлен 10.07.2012Способы задания и операции над множествами. Основные тождества алгебры и проекция вектора. Свойства сложения и умножения (коммутативность, ассоциативность и дистрибутивность). Операции над соответствиями. Диагональные элементы матрицы и линейные операции.
контрольная работа, добавлен 13.05.2014Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.
учебное пособие, добавлен 15.10.2016