Линейные алгоритмы для решения задачи о минимальном остовном дереве в минорно-замкнутых классах графов
Графы и их использование для описания сложно структурированной информации. Задача нахождения минимального остовного дерева взвешенного неориентированного графа как одна из самых известных алгоритмических проблем комбинаторной оптимизации в математике.
Подобные документы
Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.
учебное пособие, добавлен 15.10.2016Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".
методичка, добавлен 15.10.2016Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
презентация, добавлен 26.07.2015Умение решать задачи - показатель уровня математического развития. Поиск эффективных способов решения задач, доступных для понимания и применения школьниками. Общий алгоритм решения задач. Определение графа, виды задач, которые можно решать с их помощью.
презентация, добавлен 15.10.2016Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
курсовая работа, добавлен 14.01.2016- 31. Планарные графы
Определение планарных и плоских графов, простейшие свойства. Жордановая кривая. Формула Эйлера. Плоская триангуляция. Критерий планарности. Теорема Л.С. Понтрягина - К. Куратовского. Алгоритм укладки графа на плоскости. Проверка графов на планарность.
презентация, добавлен 21.09.2017 - 32. Теория множеств
Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.
методичка, добавлен 29.09.2017 Рассматривается задача, в которой матрица весовых коэффициентов дуг не является симметричной. Исследуются основные математические модели, включая модель с минимальным числом линейных ограничений. Рассматривается нахождение минимального остовного дерева.
статья, добавлен 12.05.2018Задача нахождения характеристических многочленов и спектров предфрактальных графов с затравками циклами, смежность старых ребер которых в траектории не нарушается. Рекуррентная формула, собственные значения (спектра) предфрактального графа с вершинами.
статья, добавлен 29.04.2017Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.
реферат, добавлен 11.11.2010Основные методы теории графов. Задача раскраски графа в информатике. Составление расписаний и других задач на распределение ресурсов. Алгоритм неявного перебора. Составление графиков осмотра. Задача составления расписания. Способы раскраски вершин.
курсовая работа, добавлен 26.11.2014Фрактальные и предфрактальные графы. Задача распознавания предфрактального графа, порожденного парой полных затравок чередованием. Задача структурного распознавания. Моделирование сложных иерархических систем самоподобными или фрактальными графами.
статья, добавлен 28.04.2017Математическая модели задачи планирования работы разнотипных машин с периодами простоя. Теорема о корректности приведения этой задачи к задаче комбинаторной оптимизации. Алгоритм нахождения нижней границы целевой функции возникающей задачи оптимизации.
статья, добавлен 19.02.2016- 39. Теория графов
Основные понятия теории графов. Алгоритм построения эйлерового пути. Теория графов как область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Задача коммивояжера как одна из задач теории комбинаторики.
реферат, добавлен 18.03.2010 Возможности применения производной при решении задач на оптимизацию в школьном курсе математики. Формулировка и численные методы решения задач одномерной оптимизации по заданным алгоритмам. Разработка модели факультативного урока по математике.
курсовая работа, добавлен 26.10.2010Итеративные методы для решения задач оптимизации аналитическими методами. Регулярные алгоритмы в задачах на безусловный и условный экстремумы. Поисковые и беспоисковые алгоритмы. Алгоритмы стохастической аппроксимации как вероятностные алгоритмы.
лекция, добавлен 22.07.2015Определение графов и их элементы. Связанные графы, оценка числа их ребер через число вершин и компонент связности. Обходы графов, оценка числа помеченных эйлеровых графов. Изучение планарных и двудольных графов. Основные свойства деревьев, их кодирование.
учебное пособие, добавлен 15.10.2016Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.
методичка, добавлен 28.06.2013Правила раскраски графа, приписывание цветов его вершинам с условием, что никакие смежные вершины не получают одинакового цвета. Алгоритм приближенного решения задачи определения хроматического числа и построения минимальной раскраски произвольного графа.
курсовая работа, добавлен 28.05.2019Распределенные вычисления, рассматриваемые на примере модели синхронной отправки сообщений в сети, множество процессоров связанных модулями связи. Поиск центра неориентированного дерева, псевдокод алгоритма. Анализ трудоемкости разработанного алгоритма.
контрольная работа, добавлен 29.06.2012- 46. Графы
Изучение истории возникновения теории графов, основные понятия и виды графов. Теория графов в транспортных, коммуникационных и геоинформационных системах. Применение теории графов в медицине, биологии, физике, химии, астрономии, истории, искусстве.
научная работа, добавлен 03.05.2019 Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
курсовая работа, добавлен 22.06.2014- 49. Код Харари
Понятие графа в математической теории и информатике, виды и область применения графов. Код Харари, сущность идеи Ф. Харари, основателя теории графов. Нахождение кратчайшего пути во взвешенном графе, восстановление дерева по заданному коду Прюфера.
контрольная работа, добавлен 24.11.2014 История появления теории графов, ее основные понятия, сфера практического приложения. Наиболее эффективные алгоритмы нахождения кратчайшего пути. Методика определения кратчайших путей при помощи графа. Алгоритм Дейкстры. Решение задач практической части.
курсовая работа, добавлен 14.01.2011