Детерминистические фракталы на основе итерационной последовательности точек в 2D пространстве
Модулярный дизайн детерминистических фрактальных структур в 2D пространстве. Коды, симметрия детерминистических фракталов на основе итерационной последовательности точек в 2D пространстве. Глобальная размерность детерминистических фрактальных структур.
Подобные документы
Понятие линейного, нормированного и предгильбертового пространства. Последовательности точек метрического пространства, предел и непрерывность его отображений. Необходимое условие компактности множеств. Принцип Баноха сжимающих отображений, их свойства.
лекция, добавлен 08.11.2015Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.
контрольная работа, добавлен 02.11.2010Фрактал как геометрическое образование, представляющее систему самоподобных фигур, расположенных закономерным образом. Фрактальные свойства в природе. Построение Снежинки Коха и фрактал раковина. Актуальность фракталов в нашей жизни и фракталы-анимация.
презентация, добавлен 09.12.2012- 54. Равномерная исчерпываемость семейства регулярных функций множества в топологическом пространстве
Доказательство условий, при выполнении которых семейство регулярных функций множества, заданных на алгебре подмножеств топологического пространства и принимающих значения в произвольном топологическом пространстве, являются равномерно исчерпывающими.
статья, добавлен 31.05.2013 Рассмотрение планарного разбиения дискретного множества точек по Воронову. Обзор основных свойств диаграммы. Определение линейной сложности. Изучение последовательности построения диаграммы. Выявление свойств разбивающей цепи и двухсвязного списка.
презентация, добавлен 06.03.2015Формулировка случайной функции определенной на вероятностном пространстве в узком смысле. Основные условия симметрии и согласованности семейства конечномерных распределений. Определение стандартного Пуассоновского процесса с заданной интенсивностью.
курс лекций, добавлен 28.08.2017Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
учебное пособие, добавлен 27.10.2013Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.
учебное пособие, добавлен 24.02.2014Определение положения точки в пространстве. Правая декартова, полярная и косоугольная системы координат. Способы измерения дуг. Определение координат точки в пространстве, окружности и ее радиуса. Построение сферической и цилиндрической системы координат.
презентация, добавлен 12.10.2012Центрально-симметричные точки, понятие центра их симметрии. Равенство центрально-симметричных отрезков и треугольников. Симметрия относительно прямой (осевая). Свойства линии осевой симметрии. Параллельный перенос точек. Поворот (вращение) как движение.
презентация, добавлен 16.01.2014Анализ полученных результатов, связанных с обобщением неравенств Харди-Литтлвуда-Полиа на случай достаточно произвольных операторов, действующих в сепарабельном пространстве. Анализ сепарабельного гильбертового пространства над полем комплексных чисел.
статья, добавлен 30.10.2016Теоретические аспекты обучения координатно-векторному методу обучающихся 10-11 классов. Роль и место координатно-векторного метода в школьном курсе математики. Прямоугольная система координат в пространстве. Векторы в пространстве. Задачи в координатах.
дипломная работа, добавлен 28.07.2018Координаты вектора в прямоугольном трехмерном пространстве. Представление заданного вектора в сферических координатах. Сопутствующий параллелепипед и его три диагонали. Формы преобразования прямоугольных координат в различные сферические координаты.
практическая работа, добавлен 19.01.2011Понятие предела последовательности. Характерные примеры вычисления пределов последовательности с подробным разбором решения. Теорема Вейерштрасса и примеры её применения на практике. Вычисление искомого предела, не прибегая к вспомогательным неравенствам.
курсовая работа, добавлен 07.11.2013Сущность уравнения прямой в пространстве как результат пересечения двух плоскостей. Рассмотрение нормального вектора плоскости и уравнения координатных плоскостей. Составление канонического уравнения прямой. Векторное параметрическое уравнение прямой.
контрольная работа, добавлен 13.04.2016Исследование способов задания плоскости. Взаимное расположение плоскостей в пространстве. Признаки и свойства параллельности плоскостей. Двугранные углы и угол между двумя плоскостями. Двугранный угол и его измерение. Свойства перпендикулярных плоскостей.
реферат, добавлен 15.12.2022Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
презентация, добавлен 23.10.2020Знакомство с наиболее распространенными идеями обобщения конструкции Сасаки на случай нечетной размерности. Рассмотрение основных способов определения геодезической пульверизации связности над распределением и N-продолженной метрической связности.
контрольная работа, добавлен 25.11.2016Использование фракталов для построения обычных и фоновых изображений, для анализа состояния биржевых рынков, при моделировании нелинейных процессов. Использование фракталов как популярного инструмента у трейдеров для анализа состояния биржевых рынков.
статья, добавлен 20.07.2018Построение чертежа на клетчатой бумаге или на координатной плоскости с выделенными целочисленными координатами характеристических точек фигуры или графика функции. Построение описанной окружности девяти точек для треугольников с углом 45 или 135 градусов.
статья, добавлен 25.02.2016Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.
учебное пособие, добавлен 23.03.2013Получение перспективных изображений на основе аналитической геометрии. Построение модели трехмерного объекта. Алгоритм изменения положения 3D объекта в пространстве. Нахождение нормали по 3 точкам. Определение невидимости граней и закраска методом Гуро.
курсовая работа, добавлен 19.10.2014- 74. Свойства призмы
Понятие призмы как геометрического тела, ее свойства, сфера применения и способ расчета ее площади. Измерение объемов. Краткий обзор развития геометрии. Симметрия в пространстве. Свойства боковых ребер и поверхностей призмы. Расстояние между плоскостями.
презентация, добавлен 20.05.2012 Симплекс, его грани, ребра и вершины. Свойства векторов, задаваемых ребрами прямоугольного симплекса в двухмерном, трехмерном и четырехмерном евклидовом пространстве. Понятие n-мерного евклидового пространства. Решение пространственных задач по теме.
курсовая работа, добавлен 22.04.2011