Математика для економістів

Матриця, її вектори, теорема Кронекера-Капеллі, метод Жордана–Гаусса. Дії з вектором. Дослідження функцій, їх диференціал, побудова графіків, екстремум. Основні методи інтегрування. Диференціальні рівняння. Ряди Фур'є. Елементи математичної економіки.

Подобные документы

  • Особливість способу розв’язування різницевих рівнянь, що виникають при дискретизації двовимірних крайових задач еліптичного типу. Узагальнення поняття "ітераційні процеси Якобі і Гаусса-Зейделя". Розбиття матриці для застосування комбінованого методу.

    статья, добавлен 25.08.2016

  • Побудова параметричної та рекурсивної модифікації методу Гаусса-Ньютона. Розробка нового підходу до розв’язування систем нелінійних рівнянь та нерівностей, який базується на зведенні вихідної задачі до задачі найменших квадратів. Оцінка похибки процесів.

    автореферат, добавлен 27.04.2014

  • Побудова нерівностей для ймовірності великих відхилень оцінки невідомого параметру стохастичної диференціальної системи від його дійсного значення. Розгляд задач Коші для стохастичного параболічного рівняння і для стохастичного диференціального рівняння.

    автореферат, добавлен 28.07.2014

  • Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.

    презентация, добавлен 09.07.2015

  • Біографія українського математика, доктора філософії, професора Львівського університету, основоположника математичної культури нашого народу - Володимира Левицького. Його роботи з теорії аналітичних функцій, диференціальних та інтегральних рівнянь.

    биография, добавлен 08.10.2014

  • Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.

    реферат, добавлен 03.05.2022

  • Походження поняття похідної. Екстремуми функції. Зростання та спадання функції. Найбільше та найменше її значення. Означення дотичної, піддотичної, нормалі. Правила диференціювання. Дослідження функції й побудова її графіка. Текстові задачі на екстремум.

    курсовая работа, добавлен 28.02.2010

  • Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.

    учебное пособие, добавлен 17.04.2013

  • Побудова множини позиційних керувань, що розв'язують задачу синтезу для лінійного диференціального рівняння та нелінійного рівняння за першим наближенням у гільбертових просторах. Розв'язання задачі позиційного синтезу обмежених інерційних керувань.

    автореферат, добавлен 24.02.2014

  • Теорема о существовании и единственности обратной матрицы. Операция обращения матрицы, ее свойства. Вычисление обратной матрицы с помощью алгебраических дополнений или методом Гаусса (используя преобразования Жордана). Решение матричных уравнений.

    лекция, добавлен 11.12.2014

  • Пошук асимптотичних розв'язків лінійної сингулярно збуреної системи диференціальних рівнянь у випадку кратних коренів характеристичного рівняння за допомогою методу збуреного характеристичного рівняння. Побудова формальних розв’язків системи рівнянь.

    статья, добавлен 04.02.2017

  • Ранг системы строк (столбцов) матрицы A c m строк и n столбцов как максимальное число линейно независимых строк (столбцов). Ранг матрицы – наивысший из порядков миноров этой матрицы, отличных от нуля. Теорема Кронекера – Капелли, содержание и значение.

    реферат, добавлен 03.12.2012

  • Провідна роль методу математичної індукції у вищій математиці. Повна і неповна індукція. Помилки в індуктивних міркуваннях. Принцип математичної індукції. Узагальнення принципу математичної індукції. Приклад доведення методом математичної індукції.

    курсовая работа, добавлен 14.08.2008

  • Нахождение обратной матрицы. Исследование системы линейных алгебраических уравнений на совместность. Нахождение координат вектора в заданном базисе. Метод элементарных преобразований и окаймляющих миноров. Способы нахождения ранга расширенной матрицы.

    контрольная работа, добавлен 17.04.2017

  • Обчислення заданої функції для проміжних значень аргументів за формулами Лагранжа. Виконання інтерполяції функції з використанням вбудованих сплайн-функцій пакета, що складається з кусків поліномів. Побудова графіків вихідної та інтерпольованої функцій.

    лабораторная работа, добавлен 22.07.2017

  • Визначення поняття логарифмічного рівняння. Основна логарифмічна тотожність. Приклади логарифмічних рівнянь. Властивості логарифмів та найпростіші рівняння. Методи розв’язання рівнянь: за означенням, за властивостями логарифма та графічний метод.

    разработка урока, добавлен 13.11.2015

  • Матриці та дії з ними. Визначники квадратних матриць, методи їх обчислення та властивості. Загальна теорія систем лінійних алгебраїчних рівнянь. Елементи векторної алгебри та аналітичної геометрії. Теорії границь функції однієї і багатьох змінних.

    курс лекций, добавлен 30.10.2011

  • Характеристика невизначеного інтеграла: поняття первісної функції та невизначеного інтеграла; основні методи інтегрування; інтеграли, що містять квадратний тричлен; інтегрування дробово-раціональних функцій і виразів, що містять тригонометричні функції.

    лекция, добавлен 30.04.2014

  • Оцінка ефективності явних обчислювальних схем числового розв’язку задачі Коші для звичайного диференціального рівняння. Рекомендації щодо ефективного застосування методу диференціально-тейлорівських перетворень для числового інтегрування рівнянь.

    статья, добавлен 29.07.2016

  • Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.

    контрольная работа, добавлен 09.07.2015

  • Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.

    контрольная работа, добавлен 20.12.2016

  • Метод математичної індукції. Елементи комбінаторики. Елементи теорії імовірності (поняття про випадкову подію). Основні теореми ймовірностей (додавання, множення, формула Бейєса). Повторення випробувань. Формула Бернуллі (дисперсія випадкової величини).

    лекция, добавлен 08.08.2014

  • Сущность теоремы как математической формулы, выражающей поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью. Последовательность доказательства теоремы Гаусса-Остроградского.

    презентация, добавлен 17.09.2013

  • Системы линейных уравнений, методы их решения. Метод Гаусса, метод последовательного исключения. Решение уравнений по правилу Крамера и матричный метод. Критерий совместности Кронекера-Капелли. Графический способ решения системы линейных уравнений.

    курсовая работа, добавлен 27.03.2011

  • Визначення виду формули за допомогою таблиці істинності. Основні елементи абстрактної алгебри. Фіктивні, значимі змінні для функцій. Розгляд таблиці Келі в дискретній математиці. Множини з алгебраїчними операціями. Рівняння групи з оберненими елементами.

    контрольная работа, добавлен 30.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.