Доказательство как средство математического мышления. Представления о доказательности и эволюция понятия доказательства
Математическая логика как раздел математики, посвящённый изучению способов доказательств, утверждений, вопросов оснований математики. Умозаключение и его способы получения нового знания на основе некоторого имеющегося. Формальные аксиоматические методы.
Подобные документы
Развитие логического мышления на уроках математики. Умение формулировать вопросы и умение соотносить понятия. Прием "тонкие" и "толстые" вопросы. Ознакомление с информацией по теме данного урока. Установление взаимосвязи между теорией и практикой.
статья, добавлен 04.01.2022Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.
реферат, добавлен 12.04.2015Зародження математики (з глибокої давнини до VI-V ст. до нашої ери). Розвиток математики до ХVII століття. Характеристика періоду математики змінних величин ХVII-XIX століття. Аналіз періоду сучасної математики. Внески вчених-математиків у розвиток науки.
реферат, добавлен 23.10.2015Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.
реферат, добавлен 03.04.2017Анализ понятия символической логики (математической, теоретической): происхождение, развитие и свойства. Буквенные обозначения для переменных, а также идея построения универсального языка для всей математики. Основы современной логической символики.
доклад, добавлен 27.12.2010Математическая логика как формальный математический аппарат, изучающий различные способы логических рассуждений. Рассмотрение теоремы дедукции. Анализ логических операций: конъюнкция, дизъюнкция, отрицание. Особенности проверки правильности рассуждений.
учебное пособие, добавлен 11.12.2012- 57. Выпуклые функции
Выпуклый анализ - самостоятельный раздел математики, связанный с классическим анализом и геометрией. Решение экстремальных задач в современной математической экономике. Простейшие и дифференциальные свойства выпуклых множеств. Доказательство теоремы.
методичка, добавлен 08.09.2015 Место высшей математики в инженерной деятельности. Основные направления развития процессов численных вычислений, приближенных методов и их приложений. Смысл математизации знаний. Привлечение сложного математического аппарата к решению прикладных задач.
реферат, добавлен 23.09.2014Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.
учебное пособие, добавлен 13.01.2014Роль интуиции и неявного знания в формировании господствующего математического стиля мышления. Классификация стилей ученых по линии противопоставления. Именование и существование в структуре дискурса Гутнер Г. Стили мышления Д. Гильберта и Э.Я. Брауэра.
реферат, добавлен 24.09.2010Теория игр как раздел математики, предметом которого является изучение математических моделей принятия оптимальных решений в условиях конфликта, ее основные понятия и утверждения. Методы решения игры: Брауна-Робинсона, монотонный итеративный алгоритм.
контрольная работа, добавлен 10.05.2017Изучение периодов зарождения и становления математики. Проблема счета – первая ключевая проблема античной математики. Анализ проблемы измерения, стимулировавшей развитие математики на стадии ее зарождения. "Математика. Утрата определенности" по М. Клайну.
реферат, добавлен 06.12.2009- 63. Законы логики
Предмет и основные законы логики. Понятие как логическая форма. Логические действия с понятиями. Определение количества и качества суждений, их связка. Умозаключение как форма мысли, простой категорический силлогизм. Доказательство и опровержение.
контрольная работа, добавлен 25.03.2014 Методические системы работы учителей математики, их сущность и эффективность применения. Формы организации учебной деятельности школьников. Вклад учителей математики в реализацию реформы школы. Основные методы работы учителя математики Л.Ф. Российской.
статья, добавлен 22.05.2009- 65. Алгебра логики
Логика – наука о формах и законах человеческой мысли, о законах доказательных рассуждений, изучающая методы доказательств и опровержений. Джордж Буль - создатель алгебры логики. Основные логические связки. Таблица истинности. Выполнимость формул.
презентация, добавлен 05.03.2012 - 66. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 Значение математического прогнозирования в медицине. Роль математики в медицине, в педиатрии, в нетрадиционной медицине, в современных методах диагностики. Математические расчеты в работе сердечно-сосудистой системы. Определение работоспособности сердца.
реферат, добавлен 17.01.2013Математическое моделирование играет синтезирующую роль, объединяя разные методы и походы математики. Требования, предъявляемые к математическим моделям. Примеры математического моделирования. Составление моделей. Элементарные математические модели.
реферат, добавлен 17.12.2008Рассмотрение области математики, изучающей дискретные математические объекты и структуры. Определение особенностей нахождения оптимального алгоритма расчетов, действий, а так же описания дискретных структур. Изучение различных систем представления чисел.
статья, добавлен 18.03.2019Анализ значения систем класса MathCAD в образовании, для решения сложных математических задач, при изучении математики, повышении фундаментальности математического и технического образования. Изучение интерфейса, приемов работы, возможностей MathCAD 2001.
курсовая работа, добавлен 28.05.2015Изучение построения фундамента для математики в XX в. Понятие истинности в математике, абсолютизация человеческих представлений о реальном мире. Формализация математической логики. Эквивалентность интуитивных и формальных доказательств в тезисе Гильберта.
реферат, добавлен 28.10.2018Зарождение геометрии в Древнем Египте. Элементарная планиметрия: аксиомы и постулаты. Названия и площади многоугольников. Примеры элементарных геометрических доказательств. Стереометрия: определение плоскости, свойства многогранника, призмы, пирамиды.
лекция, добавлен 20.04.2010Эволюция и применение математики в современной науке и технике. Математические начала натуральной философии. Значение трудов Декарта, Ньютона и Галилея. Открытие математических, логических и физических закономерностей. Математика и теория множеств.
контрольная работа, добавлен 23.03.2010Поняття та зміст математики як наукового напрямку, предмет та методи її вивчення. Чотири періоди розвитку математики, їх видатні представники. Джерела основних математичний понять. Характеристика праць та біографічні відомості про жінок-математиків.
реферат, добавлен 24.01.2011Ознакомление с ключевыми этапами становления математики. Формирование арифметики, геометрии и алгебры. Предпосылки создания системы счисления. Значение вавилонской и египетской цивилизаций в развитии математики. Анализ греческих методов вычислений.
реферат, добавлен 23.05.2016