Понятие производной
Понятие производной, ее геометрический, физический смысл. Производные высших порядков, изучение функции с помощью производной. Достаточные условия экстремума функции: нахождение экстремума, точка перегиба графика функции. Применение производной в алгебре.
Подобные документы
Понятие и общая характеристика выпуклой функции, условия ее формирования и требования к неравенству. Теорема достаточного условия выпуклости и перегиба. Точка перегиба как точка экстремума первой производной. Определение производной данной функции.
презентация, добавлен 21.09.2013Геометрический и физический смысл производной. Основные правила дифференцирования. Изучение функции с помощью производной. Достаточные условия убывания и возрастания функции. Использование производной для решения задач по экономической теории.
курсовая работа, добавлен 06.04.2014Геометрический и физический смысл производной. Правила дифференцирования, производные высших порядков. Изучение функции с помощью производной. Возрастание и убывание функции, экстремум функции. Общая схема исследования функции и построение ее графика.
реферат, добавлен 10.04.2010- 4. Производная
Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.
реферат, добавлен 26.06.2013 Понятие о производной функции в точке, ее физический и геометрический смысл. Методические особенности изучения линейной, квадратной и кубических функций, их свойства и график. Определение производной функции в точке, нахождение промежутков возрастания.
контрольная работа, добавлен 07.03.2017Определение производной функции через предел. Общепринятые обозначения. Дифференцируемость. Геометрический и физический смысл производной. Производные высших порядков. Способы записи производных. Правила дифференцирования. Таблица производных функций.
реферат, добавлен 07.01.2023Понятие и применение производной функции в математике. Описание теорем о дифференцируемых функциях. Применение производной к исследованию функций. Необходимый, достаточный признак существования ее экстремума. План исследования, построение графика функции.
презентация, добавлен 23.08.2016Приложение производной в технике: принцип ее работы. Производство, передача и потребление электроэнергии. Геометрический и физический смысл производной. Его применение при исследовании свойств функций Уравнение касательной к графику линейной функции.
реферат, добавлен 31.10.2017Рассмотрение задач, приводящих к понятию производной. Механический и геометрический смысл производной. Уравнение касательной и нормали к плоской кривой. Производные тригонометрической, логарифмической, степенной, сложной функций, высших порядков.
шпаргалка, добавлен 28.05.2015Формирование современного понимания функциональной зависимости. Достаточные условия экстремума функции. Нахождение экстремума с помощью производной. Определение предела функции в теореме Коши. Эквивалентность различных определений предела функции.
реферат, добавлен 03.10.2012Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
доклад, добавлен 23.04.2013Геометрический смысл производной. Определение значения производной для функции и отложение их на оси. Графическое дифференцирование. Признаки существования локальных экстремумов и точек перегиба. Графическая иллюстрация. Недифференцируемая точка функции.
контрольная работа, добавлен 27.08.2011Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.
лекция, добавлен 05.03.2009Операция отыскания производной - дифференцирование функции. Механический и геометрический смысл производной. Пример нахождения производной функции, исходя из ее определения. Определение логарифма, ввод новой переменной, дифференциация частей уравнения.
лекция, добавлен 17.05.2021Доказательство теоремы по эквивалентности понятий "обобщение производной Шварца и исправленной производной по С. Шарипову". Особенности определения точки излома графика функции. Сущность теории классического анализа. Общее понятие об урчуктной функции.
статья, добавлен 20.05.2018Определение и расчет производной функции. Формулы приращения дифференциала. Геометрический и физический смысл производной и дифференциала. Мгновенная скорость точки в момент времени. Использование дифференциала для приближенных вычислений прироста.
лекция, добавлен 26.01.2014Экономический смысл производной и сущность дифференциального исчисления. Применение производной при решении задач по экономической теории. Использование производной в предельном анализе, описание экономических законов с помощью математических формул.
презентация, добавлен 16.10.2015Производная функции как одно из фундаментальных понятий математики. Применение производной при решении физических, химических и биологических задач. Особенности решения с помощью производной функции задач с географическим и экономическим содержанием.
творческая работа, добавлен 25.01.2015Определение производной. Схема вычисления производной. Основные правила дифференцирования. Производная сложной и обратной функций. Использование понятия производной в экономике. Понятие дифференциала функции и его применение в приближенных вычислениях.
курсовая работа, добавлен 16.09.2013Понятие производной, её геометрический смысл. Правила дифференцирования, производная сложной функции. Дифференциал функции, логарифмическое дифференцирование, правило Лопиталя. Производные высших порядков и их применение для исследования свойств функций.
методичка, добавлен 27.09.2012Свойства функций, непрерывных на отрезке. Теоремы и их доказательства. Определение производной и ее приложения. Закон равномерного движения, механический смысл производной. Геометрический смысл производной. Непрерывность дифференцируемой функции.
лекция, добавлен 05.03.2009Выведение формулы нахождения обобщенной производной Шварца (ОПШ) при условии непрерывности функции. Характеристика общих и частных случаев важных теорем, относящихся к этому понятию. Описание геометрического смысла обобщенной производной Шварца.
статья, добавлен 20.05.2018Дифференцируемые функции своих аргументов. Вычисление производной сложной функции. Свойство инвариантности формы первого дифференциала. Теорема производной обратной функции, ее геометрический смысл. Производная степенно показательной функции, ее алгоритм.
лекция, добавлен 26.01.2014Порядок определения производной сложной функции. Сущность и процесс расчета инвариантности формы первого дифференциала. Характеристика производной обратной функции. Особенности логарифмической производной, алгоритм вычисления. Дифференцирование функции.
лекция, добавлен 29.09.2013Геометрический смысл производной функции комплексного переменного. Геометрический смысл аргумента и модуля производной. Общие свойства конформных отображений. Линейная, дробно-линейная, степенная функция. Понятие римановой поверхности. Функция Жуковского.
курсовая работа, добавлен 08.11.2017