Геометрические преобразования

Преобразование линии, фигуры, плоскости. Определение и виды движения. Особые свойства переноса. Понятие центральной и осевой симметрии. Доказательство признаков равенства треугольников. Использование поворота отрезков при решении геометрических задач.

Подобные документы

  • Определение подобия треугольников в математике. Доказательство первого признака подобия треугольников. Теоремы второго и третьего признаков подобия и их доказательство. Пропорциональные отрезки в прямоугольном треугольнике. Формулировки теоремы Фалеса.

    презентация, добавлен 25.04.2012

  • Ознакомление с сущностью понятия, основными признаками и теоремой, на основании которых можно доказать, что несколько треугольников равны между собой. Построение математического выражения равенства геометрических фигур, образованных тремя отрезками.

    презентация, добавлен 10.12.2016

  • Понятие инверсии плоскости. Аналитическое выражение инверсии. Образы прямых и окружностей, инвариантные окружности, свойства углов и расстояний при инверсии. Инверсия и гомотетия. Применение инверсии при решении задач на построение и на доказательство.

    курсовая работа, добавлен 02.02.2011

  • Основные понятия правильной фигуры, их свойства, периметр, а также площадь геометрической фигуры. Основные виды правильных фигур (шестиугольник, треугольник, квадрат, пятиугольник), понятие их равенства и свойств. Задачи для урока по математике.

    лекция, добавлен 14.08.2014

  • Рассмотрение конструирование и функционирование дидактической системы решения конкретных учебных задач. Использование геометрического преобразование объекта посредством перемещения, отображения относительно прямой или точки, зеркального отображение.

    статья, добавлен 08.12.2018

  • Центральная симметрия: определение и её значение. Фигуры, обладающие центральной симметрией и нахождение их центра, прямоугольные трапеции и квадрат, поворот фигур вокруг оси. Примеры симметрии в растениях, значение центральной симметрии в архитектуре.

    презентация, добавлен 13.04.2012

  • Фигуры, обладающие симметрией, одной или несколькими осями симметрии. Центр симметрии фигуры. Соразмерность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости. Построение точки, симметричной данной.

    презентация, добавлен 13.12.2012

  • Изучение методов изображения пространственных форм на плоскости. Проецирование прямой линии. Определение натуральной величины прямой. Главные линии плоскости. Кривые линии и поверхности. Аксонометрические проекции. Решение метрических и позиционных задач.

    учебное пособие, добавлен 27.05.2014

  • Расширение основных геометрических понятий о симметрии на примере кристаллов. Исследование простых и сложных геометрических фигур и их составляющих. Изучение общих признаков многогранников, использование геометрических формул. Форма кристаллов.

    реферат, добавлен 04.02.2015

  • Определение понятия симметрии и ее виды. Окружность и параллелограмм как простейшие фигуры, обладающие центральной симметрией. Примеры фигур, не имеющих центра симметрии (треугольник). Описание ее проявления в искусстве, архитектуре, технике и быту.

    презентация, добавлен 22.12.2014

  • Общие аксиомы конструктивной геометрии. Инструменты геометрических построений. О возможности решения задач одним циркулем. Построение на плоскости одной линейкой. Элементарные задачи, этапы и методы их выполнения. Методические рекомендации по обучению.

    дипломная работа, добавлен 06.03.2014

  • Исследование основных векторных соотношений, особенности их использования в решении математических задач. Структура системы, полученной в силу единственности разложения вектора. Доказательство причисления равенства к основным векторным соотношениям.

    реферат, добавлен 18.06.2015

  • Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.

    курсовая работа, добавлен 25.01.2017

  • Рассмотрение признака параллельности прямых. Изучение теоремы и леммы. Характеристика взаимного расположения прямой и плоскости. Определение угла между скрещивающимися и параллельными прямыми. Свойства равенства отрезков, заключенных между плоскостями.

    презентация, добавлен 23.10.2013

  • Подобие второго рода. Осевая симметрия. Следствия векторных формул. Алгебра преобразований и векторных формул, примеры решения основных задач с их использованием. Исследование векторных выражений. Вывод формул разложения на элементарные преобразования.

    статья, добавлен 04.05.2012

  • Ортогональное проецирование точки. Определение натуральной величины прямой линии. Следы плоскости. Позиционные и метрические задачи. Методы преобразования эпюра Монжа. Многогранники. Кривые поверхности. Касательные плоскости и аксонометрические проекции.

    учебное пособие, добавлен 06.05.2013

  • Преобразование, одно из основных понятий математики, возникающее чаще всего при изучении соответствий между классами геометрических объектов и классами функций. Стереографическая проекция, свойства оси в зависимости от характера расположения окружностей.

    контрольная работа, добавлен 15.06.2011

  • Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.

    курс лекций, добавлен 21.04.2015

  • Понятие инверсии как сложного преобразования геометрических фигур, ее координатные формулы. Построение образа точки, прямой и окружности при инверсии. Свойства углов и расстояний при инверсии. Применение инверсии при решении задач на построение.

    курсовая работа, добавлен 05.10.2017

  • Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.

    учебное пособие, добавлен 13.09.2017

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Обозначение вершин и сторон треугольника. Виды треугольников (остроугольный, прямоугольный и тупоугольный), признаки их равенства. Сумма углов треугольника. Замечательные линии и точки в треугольнике. Соотношение сторон в произвольном треугольнике.

    презентация, добавлен 06.05.2014

  • Изучение некоторых методов решения геометрических задач на местности и освоение приемов компьютерного конструирования и возможностей редакторов. Деление отрезков, высоты и углов. Практическое применение: составление карт, разметка участков местности.

    реферат, добавлен 27.08.2010

  • Понятийный аппарат векторного метода решения задач. Основные свойства произведения вектора на число. Методика решения задач аффинной геометрии векторным методом. Задачи, связанные с доказательством параллельности прямых и отрезков, прямых и плоскости.

    курсовая работа, добавлен 12.02.2013

  • Способы построения геометрических фигур с помощью циркуля и линейки. Схема решения задач с применением методов пересечения, подобия, методов инверсии, движения. Решение задачи построения фигур при помощи одной линейки, линейки и угольника, одного циркуля.

    курс лекций, добавлен 29.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.