Начала гармонического анализа
Изучение особенностей гармонического анализа Фурье. Вычисление площадей фигур с помощью интегралов. Исследование понятия "синусоида" и ее практического применения. Графическая иллюстрация анализа Фурье. Применение вейвлетов в математических алгоритмах.
Подобные документы
Задача корреляционного анализа и уравнение регрессии. Особенности и этапы проведения регрессионного анализа. Определение функции и оценка неизвестных значений. Границы доверительных интервалов. Этапы и технология работы с пакетом анализа "Регрессия".
презентация, добавлен 18.12.2012Решение математических задач. Нахождение пиков функции. Вычисление пределов, определенных и неопределенных интегралов; площади фигуры, ограниченной кривыми. Исследование функций дифференциальными методами. Уравнение касательной и нормали к кривой.
контрольная работа, добавлен 10.06.2014Временные ряды и их исследования. Методы анализа временных рядов: метод Гусеница, основные направления его использования, сравнение его с другими методами (автоагрессия, разложение Фурье, Параметрическая регрессия). Описание метода, теоретические аспекты.
курсовая работа, добавлен 29.05.2014Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
практическая работа, добавлен 18.10.2013Вычисление площадей и объёмов с помощью двойных интегралов. Анализ сущности двойного интеграла в геометрии. Расчет интегральной суммы в криволинейном цилиндре. Площадь области, ограниченной замкнутой кривой. Нахождение определенного интеграла функции.
презентация, добавлен 17.09.2013Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
лекция, добавлен 18.10.2013Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.
учебное пособие, добавлен 06.09.2017Роль Лейбница в развитии математического анализа. История интегрального исчисления. Интегрирование тригонометрических функций, теория поверхностных интегралов, определённый и несобственный интегралы. Криволинейная трапеция. Дифференциальные уравнения.
контрольная работа, добавлен 29.01.2013Развитие понятия о числе. Корни, степени и логарифмы. Координаты и векторы. Основы тригонометрии. Степенные, показательные, логарифмические и тригонометрические функции. Свойства многогранников. Начала математического анализа. Применение интеграла.
учебное пособие, добавлен 29.11.2014Обзор математических методов построения и использования классификаций. Подходы к решению задач кластер-анализа и группировки. Глобальные и локальные критерии естественности классификации. Методы дискриминантного анализа и проблема построения рейтингов.
статья, добавлен 13.05.2017Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.
контрольная работа, добавлен 23.04.2022Определение бета- и гамма-функций с помощью интегралов Эйлера соответственно первого и второго рода, их применение для вычисления интегралов по формуле Стерлинга. Рассмотрение неполных гамма-функций (функции Прима). Примеры вычислений интегралов.
курсовая работа, добавлен 01.11.2010Понятие, задачи и области применения техники кластеризации. Классификация и особенности методов многомерного анализа. Построения горизонтальной древовидной диаграммы межгрупповой изменчивости. Разработка алгоритма объединения и интерпретация результатов.
реферат, добавлен 05.12.2019Изучение разделов линейной и векторной алгебры, аналитической геометрии, основ математического анализа и операционного исчисления. Рассмотрение примеров решения двойных, тройных, криволинейных и поверхностных интегралов, дифференциальных уравнений.
учебное пособие, добавлен 12.02.2016Вычисление интегралов в пределах и функциях, нахождение точки пересечения парабол. Разложение подинтегральных выражений на простые дроби и интегрирование по частям, нахождение точки пресечения линий, решения и расчёты функций интегрируемых значений.
контрольная работа, добавлен 23.04.2012Построение и сравнение линейной регрессионной и нейросетевой математических моделей зависимости органолептической оценки мясного сырья от основных физико-химических и функционально-технологических параметров. Особенности построения нейронных сетей.
статья, добавлен 28.04.2017Дифференциальное исчисление функций, геометрический и физический смысл ее производной. Логарифмическое дифференцирование; интегральное исчисление; градиент. Нахождение площадей плоских фигур. Геометрические и физические приложения кратных интегралов.
курс лекций, добавлен 29.06.2016Методы, используемые для вычисления интеграла в пространстве R2 методом Монте-Карло: детерминистический, обычный и др. Доопределение подынтегральной функции, оценка математического ожидания. Вычисление интегралов в пространстве Rn методом Монте-Карло.
курсовая работа, добавлен 31.10.2017Формирование пространственного воображения и уровня логической культуры. Анализ сущности понятия гомотетии как преобразования подобия фигур. Свойства и область применения гомотетии. Преимущества решения практических задач с помощью гомотетии и движения.
презентация, добавлен 19.03.2021Кластерный анализ как инструмент группировки объектов. Коэффициенты оценки подобия на практике. Задача кластерного анализа. Иерархические методы его применения. Проверка качества кластеризации. Методика применения основных методов кластерного анализа.
курс лекций, добавлен 19.09.2017Масса неоднородного тела. Тройной интеграл и его вычисление. Преобразование тройных интегралов. Декартовы, сферические и цилиндрические координаты. Установление связи между сферическими и декартовыми координатами. Практика применения тройных интегралов.
реферат, добавлен 12.03.2010Совершенствование математических и физических моделей аэрогидродинамических процессов. Исследование нестационарных задач механики сплошных сред в пространствах произвольной размерности. Изучение дифференциальных уравнений производных типа Навье-Стокса.
статья, добавлен 26.10.2016Математический анализ как совокупность разделов математики, посвящённых исследованию функций и их обобщении методами дифференциального и интегрального исчисления. Использование математических методов в сфере управления, решение экономических задач.
эссе, добавлен 24.08.2013Информационный осмотр методов решения кратных интегралов. Понятие о кубатурных формулах. Метод ячеек и последовательное интегрирование. Метод Симпсона для кратных интегралов, его реализация. Программа вычисления интегралов с помощью кубатурной формулы.
курсовая работа, добавлен 23.04.2011Понятие и задача интегрирования. Свойства неопределённых интегралов как следствие соответствующих свойств для производных. Правило замены переменных в интеграле, вычисление неопределенных интегралов. Метод вычисления интегралов от рациональных функций.
лекция, добавлен 10.04.2016