Обратимость линейных дифференциальных операторов второго порядка в однородных пространствах функций
Изучение линейных дифференциальных операторов (уравнений) второго порядка в однородном пространстве функций, определенных на всей оси. Условия их обратимости. Условия разрешимости классов уравнений второго порядка с помощью операторных матриц 2 порядка.
Подобные документы
Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
курсовая работа, добавлен 26.11.2014Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.
учебное пособие, добавлен 14.03.2014Уравнение прямой с направляющим и нормальным вектором. Кривые второго порядка, полярная система координат. Определение терминов "гипербола", "парабола" и "эллипс". Поворот и параллельный перенос системы координат. Векторная функция скалярного аргумента.
презентация, добавлен 21.09.2017Особенности планирования эксперимента. Ортогональный центрально-композиционный план второго порядка. Коэффициенты аппроксимирующего полинома в виде полной квадрики. Проверка значимости коэффициентов аппроксимирующего полинома по критерию Стьюдента.
курсовая работа, добавлен 23.04.2014Рассмотрение вопроса численного интегрирования дифференциального уравнения Ферхюльста второго порядка с заданными начальными условиями. Сравнение приближенных вычислений данных с точным решением уравнения при расчетах в программе MathCAD рядом Тейлора.
статья, добавлен 30.09.2020Изучение уравнения прямой линии с направляющим вектором. Гипербола - множество точек плоскости, для которых модуль разности расстояний до двух фиксированных фокусов постоянный. Векторная функция скалярного аргумента. Прямая линия, кривые второго порядка.
презентация, добавлен 29.10.2017Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.
контрольная работа, добавлен 11.06.2016Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
статья, добавлен 21.09.2016Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
автореферат, добавлен 12.05.2014Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. График разности исходной (табличной) и аппроксимирующей функций. Численное решение задачи коши для обыкновенного дифференциального уравнения первого порядка.
контрольная работа, добавлен 01.04.2015Понятие степенного ряда и области его сходимости. Введение функций С(x) и S(x), формулы их сложения и вывод основных свойств. Тригонометрические функции как решения системы двух дифференциальных уравнений первого порядка. Применение рекуррентных формул.
курсовая работа, добавлен 09.03.2012Алгоритмы решения неоднородных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах для различных типов правых частей уравнений. Особенности, возникающие при решении уравнений в связи с существованием делителей нуля.
статья, добавлен 29.01.2019Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.
лекция, добавлен 17.12.2014Построение приближений решения линейных дифференциальных уравнений с переменными коэффициентами. Приведение их к интегро-дифференциальным уравнениям Вольтерра при помощи интегральных преобразований Лапласа и основных теорем операционного исчисления.
статья, добавлен 26.07.2016Метод фазового пространства, редукция сингулярного пространства. Основные сведения об относительных резольвентах. Результаты по теории дифференциальных операторов в банаховых пространствах. Конечномерная управляемость уравнения соболевского типа.
автореферат, добавлен 15.09.2012- 116. W-метод Н.В. Азбелева в теории линейных стохастических функционально-дифференциальных уравнений
Стохастическая версия W-метода, который восходит к работам Азбелева. Теоремы, которые можно рассматривать как фундамент общей схемы анализа устойчивости линейных стохастических функционально-дифференциальных уравнений. Пример скалярного уравнения Ито.
статья, добавлен 26.04.2019 Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
шпаргалка, добавлен 02.02.2016Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
курсовая работа, добавлен 05.06.2014Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Варианты параллельной системы вычислений при решении систем дифференциальных уравнений первого порядка с нечеткими условиями. Анализ метода, предложенного Обергуггенбергером и Пицманом в статье "Дифференциальные уравнения с нечеткими параметрами".
статья, добавлен 27.02.2019Характеристика и особенности численного дифференцирования. Рассмотрение исправленного метода Эйлера, блок-схема алгоритма. Применение численного дифференцирования, Решение обыкновенных дифференциальных уравнений первого порядка с начальными данными.
курсовая работа, добавлен 10.06.2021- 122. Определение функций источника систем уравнений составного типа для некоторых начально-краевых задач
Решение задачи идентификации функции источника одномерной системы параболического и эллиптического уравнений в частных производных второго порядка. Исследование задачи Коши, второй краевой и обратных задач для эволюционных систем составного типа.
статья, добавлен 29.04.2018 - 123. Высшая математика
Основные действия над матрицами. Решение произвольных систем уравнений Крамера и Гаусса. Коллинеарные и компланарные векторы. Кривые второго порядка. Аналитическая геометрия в пространстве. Поверхности вращения. Бесконечно малые функции. Графы и сети.
курс лекций, добавлен 05.03.2016 - 124. Классическая алгебра
Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.
научная работа, добавлен 22.07.2014 Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012