Многомерный регрессионный анализ

Исследование методов корреляционного и регрессионного анализов. Характеристика множественного и частного коэффициентов корреляции. Обоснование применения регрессионного моделирования. Обзор применения алгоритмов для интерпретации уравнения регрессии.

Подобные документы

  • Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.

    задача, добавлен 14.05.2016

  • Использование регрессионного анализа в физико-химических исследованиях. Обработка экспериментальных результатов методом наименьших квадратов. Определение коэффициентов уравнений регрессии при аппроксимации данных полиномами первой и второй степени.

    контрольная работа, добавлен 10.12.2015

  • Изучение величины, выражающей зависимость среднего значения случайной величины от значений случайной величины. Проведение исследования сущности и цели регрессионного анализа. Определение коэффициентов линейного уравнения множественной регрессии.

    презентация, добавлен 07.10.2020

  • Построение линейной модели и стандартизованного уравнения множественной регрессии. Анализ коэффициентов корреляции. Расчет коэффициента множественной детерминации. Оценка статистической надежности уравнения регрессии и коэффициента детерминации.

    задача, добавлен 27.09.2016

  • Применение линейного регрессионного анализа для ситуаций с одной зависимой и одной независимой переменной. Проверка соблюдения необходимых условий для применения анализа линейной однофакторной регрессии. Построение точек на графике прямой регрессии.

    презентация, добавлен 01.11.2013

  • Исторические этапы развития эконометрики. Модели временных рядов. Системы одновременных уравнений. Сущность и порядок регрессионного, вариационного, дисперсионного и панельного анализа. Обзор и краткая характеристика основных эконометрических методов.

    реферат, добавлен 01.03.2011

  • Принципы измерения и шкалирования. Особенности дисперсионного, многофакторного и ковариационного, модели регрессионного и факторного анализа. Характеристика основных этапов выполнения факторного анализа. Описание этапов выполнения кластерного анализа.

    курс лекций, добавлен 23.09.2017

  • Определение среднего коэффициента эластичности и сравнительная оценка силы связи фактора с результатом. Расчет параметров линейного уравнения множественной регрессии. Определение коэффициентов автокорреляции уровней ряда первого и второго порядка.

    контрольная работа, добавлен 16.04.2020

  • Требования, предъявляемые к исходным данным, и последовательность проведения факторного анализа. Построение двухмерной линейной модели корреляционного и регрессионного анализа. Факторный анализ в психологии: разработка психодиагностического теста.

    доклад, добавлен 26.12.2010

  • Анализ методов обработки матрицы экономических данных. Рассмотрение функциональной и статистической зависимостей между факторами. Определение зависимостей, описываемых с помощью корреляционной связи. Постановка и решение задачи регрессионного анализа.

    лекция, добавлен 19.09.2017

  • Сущность корреляционного анализа, понятие линейной и нелинейной связи, показатель её силы. Выбор и условия применения коэффициентов корреляции зависимо от типа шкалы и числа варьирующих признаков. Корреляция ранговых и дихотомических переменных.

    статья, добавлен 01.06.2016

  • Расчет матрицы парных коэффициентов корреляции и оценка статистической значимости коэффициентов корреляции. Связь цены квартиры с ее площадью. Уравнение множественной и линейной парной регрессии, детерминации, F-критерий Фишера, коэффициент эластичности.

    контрольная работа, добавлен 13.05.2014

  • Изучение параметров уравнения линейной регрессии. Расчет остаточной суммы квадратов. Проверка выполнения предпосылок МНК. Вычисление дисперсий случайных величин. Свойства коэффициентов регрессии. Критерий поворотных точек. Парный коэффициент корреляции.

    контрольная работа, добавлен 04.02.2014

  • Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

    курсовая работа, добавлен 14.12.2015

  • Суть модели Линтнера для коррекции размера дивидендов. Построение корреляционного поля для страховых резервов и годовой прибыли. Оценка качества уравнения простой регрессии с помощью коэффициента детерминации и критерия Фишера. Расчет критерия Ирвина.

    контрольная работа, добавлен 25.06.2019

  • Построение статистической модели зависимости стоимости квартиры от размера ее площади. Расчет параметров линейного уравнения множественной регрессии. Сравнительная оценка влияния факторов на результативный показатель с помощью коэффициентов эластичности.

    контрольная работа, добавлен 06.04.2015

  • Определение значения коэффициентов уравнения регрессии. Проверка значимости полученных коэффициентов. Построение модели на адекватность. Приведение уравнения к натуральному виду. Характеристика уравнений регрессии II порядка, среднее квадратическое.

    курсовая работа, добавлен 04.01.2018

  • Порядок вычисления параметров и построения поля корреляции и эмпирической линии регрессии. Расчет значимости коэффициентов регрессии с помощью t-статистики Стьюдента, определение доверительных интервалов, коэффициентов детерминации и корреляции.

    контрольная работа, добавлен 27.09.2011

  • Особенность определения объема выборки относительной частоты. Расчет абсолютных показателей вариации. Вычисление среднеквадратического отклонения. Сущность корреляционного и регрессионного анализа. Основная характеристика интервала варьирования фактора.

    практическая работа, добавлен 10.06.2016

  • Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.

    контрольная работа, добавлен 13.01.2018

  • Требования, виды и последовательность организации эксперимента. Статистическая вероятность и распределения случайных величин. Параметры эмпирических распределений и проверка нормальности распределения. Основы корреляционного и регрессионного анализов.

    учебное пособие, добавлен 04.02.2016

  • Анализ зависимости объема потребления домохозяйства от располагаемого дохода. Построение регрессионной модели. Оценка качества уравнения регрессии. Расчет коэффициента эластичности, ошибок аппроксимации и регрессии, значения коэффициента детерминации.

    контрольная работа, добавлен 07.03.2016

  • Построение уравнения парной регрессии. Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статической значимости параметров регрессии и корреляции. Прогноз зарплаты в зависимости от значения прожиточного минимума.

    задача, добавлен 27.09.2016

  • Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.

    курсовая работа, добавлен 23.11.2013

  • Построение уравнения линейной парной регрессии, оценка статистической значимости ее параметров и коэффициента корреляции. Уравнение множественной регрессии и вычисление частного коэффициента эластичности. Анализ автокорреляции уровней временного ряда.

    контрольная работа, добавлен 27.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.