Векторы на плоскости и в пространстве. Действия над векторами
Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
Подобные документы
Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.
презентация, добавлен 21.09.2013Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.
презентация, добавлен 21.09.2013Признак коллинеарности векторов, их абсолютная длинна и скалярное произведение. Сумма векторов, правило треугольника, параллелограмма, многоугольника, параллелепипеда Смешанные произведения в координатах. Проекции вектора на ось. Координатные формулы.
реферат, добавлен 28.02.2011Понятие и основные свойства векторов как направленных отрезков, их типы и параметры, принципы измерения. Содержание и подходы к проведению линейных операций над векторами, используемые при этом правила. Проектирование на ось и составляющие процесса.
презентация, добавлен 23.08.2016Понятие декартова базиса. Определение радиус-вектора точки и длины вектора. Описание свойств параболы. Исследование системы уравнений на совместность и её решение. Построение плоскости через заданные прямую и точку. Вычисление произведения векторов.
контрольная работа, добавлен 22.08.2014Взаимное расположение точек и прямых в пространстве и на плоскости. Уравнение прямой по точке и вектору нормали, заданной угловым коэффициентом. Параметрические и канонические уравнения прямой в пространстве. Уравнение прямой, проходящей через две точки.
курсовая работа, добавлен 08.12.2015Понятие и классификация векторов. Действия и линейные операции над векторами, их умножение на число и на матрицу. Скалярное, векторное, смешанное произведение векторов и их свойства (перестановки, распределения, сочетания, ортогональности, квадрата).
реферат, добавлен 07.09.2012Метод координат в пространстве. Решение задачи на многогранник, цилиндр, конус. Определение координат вектора разности. Условие компланарности. Введение прямоугольной системы координат. Расчет длинны, используя формулу скалярного произведения векторов.
контрольная работа, добавлен 26.02.2011Изучение линейных операций над свободными векторами (сложение векторов и умножение вектора на число). Линейные операции на множестве. Критерий коллинеарности. Правило треугольника и параллелограмма. Определение векторного пространства. Базис совокупности.
презентация, добавлен 01.09.2015Определение перпендикулярности прямых в пространстве, их расположение относительно друг друга. Определение прямой, перпендикулярной плоскости. Примеры и геометрические задачи, представляющие графическую интерпретацию прямой, перпендикулярной плоскости.
презентация, добавлен 29.01.2015Понятия и свойства эллипса, его полуосей. Характеристика степени вытянутости – эксцентриситет. Центр симметрии эллипса. Перпендикулярность нормальной плоскости и касательной прямой. Расчет радиус-вектора и векторного уравнения линии в пространстве.
задача, добавлен 18.05.2015Геометрический смысл и свойства псевдовектора, перпендикулярного плоскости, построенного по двум сомножителям в результате бинарной операции. Варианты вычислений векторного произведения. Свойства смешанного произведения трех математических объектов.
презентация, добавлен 01.09.2015Основные различия между прямоугольной системой координат и ортонормированным базисом. Способы определения коллинеарности векторов плоскости. Характеристика пространственного базиса и аффинной системы координат. Примеры задач по геометрии, их решение.
контрольная работа, добавлен 04.11.2012Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.
реферат, добавлен 20.02.2017Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.
лекция, добавлен 26.01.2014Построение вектора, перпендикулярного двум имеющимся. Обзор правых и левых троек векторов в трёхмерном пространстве. Отличие векторного произведения от скалярного. Изучение его геометрических и алгебраических свойств. Выражения для декартовых координат.
реферат, добавлен 14.01.2015Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.
лекция, добавлен 29.09.2013Исследование способов задания плоскости. Взаимное расположение плоскостей в пространстве. Признаки и свойства параллельности плоскостей. Двугранные углы и угол между двумя плоскостями. Двугранный угол и его измерение. Свойства перпендикулярных плоскостей.
реферат, добавлен 15.12.2022Симплекс, его грани, ребра и вершины. Свойства векторов, задаваемых ребрами прямоугольного симплекса в двухмерном, трехмерном и четырехмерном евклидовом пространстве. Понятие n-мерного евклидового пространства. Решение пространственных задач по теме.
курсовая работа, добавлен 22.04.2011Основные виды матриц. Обратная матрица, алгоритм нахождения, матричные уравнения. Основные теоремы о ранге матрицы. Минор, алгебраическое дополнение. Балансовая модель Леонтьева. Векторы на плоскости и в пространстве. Скалярное произведение векторов.
шпаргалка, добавлен 18.03.2013Изучение основных понятий векторной алгебры. Определение базиса вектора, коллинеарных и компланарных векторов. Изучение проекции на ось и ее свойств. Рассмотрение сложения векторов: правил треугольника и параллелограмма. Формулирование теоремы Фалеса.
лекция, добавлен 26.01.2014Сущность уравнения прямой в пространстве как результат пересечения двух плоскостей. Рассмотрение нормального вектора плоскости и уравнения координатных плоскостей. Составление канонического уравнения прямой. Векторное параметрическое уравнение прямой.
контрольная работа, добавлен 13.04.2016Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.
лекция, добавлен 30.11.2010Теория движения плоскости. Определение и свойства центральной и осевой симметрии плоскости, свойства переноса и поворота. Композиция центральных симметрии и переносов. Координатные формулы движений плоскости. Примеры задач на тему "Движение плоскости".
курсовая работа, добавлен 05.10.2017- 50. Понятие вектора
Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.
лекция, добавлен 23.12.2013