Дифференциальные уравнения I и II порядка
Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
Подобные документы
Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015- 102. Теорема Нётер
Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.
курсовая работа, добавлен 10.11.2010 Математические операции над случайными событиями. Решение задач комбинаторики. Основные методы вычисления вероятностей элементарных событий. Формулы Байеса и Пуассона. Независимые испытания Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.
лекция, добавлен 21.03.2018Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.
курс лекций, добавлен 26.08.2015Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012Аналитическая и дифференциальная геометрия. Исследования Гаусса по неевклидовой геометрии. Обобщения теоремы Эйлера о многогранниках. Развитие концепции комплексного числа. Последовательности и ряды аналитических функций. Интегральная теорема Коши.
книга, добавлен 25.11.2013Полная группа несовместных гипотез. Вероятности этих гипотез до опыта. Условные вероятности каждой из них. Теорема об умножении. Формула Байеса. Вероятность вытащить на экзамене шпаргалку незаметно для преподавателя. Статистика запросов кредитов в банке.
презентация, добавлен 01.11.2013Описание связи между неизвестной функцией и ее производными дифференциальным уравнением. Решение уравнения Клеро в параметрическом виде. Определение огибающей семейства прямых. Общее решение уравнения Лагранжа. Дифференцирование равенства по переменной x.
реферат, добавлен 21.05.2021Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.
контрольная работа, добавлен 24.12.2014Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.
статья, добавлен 31.05.2013Сущность обыкновенных дифференциальных уравнений, описание их общего вида и основные правила решения. Понятие условия Коши, его применение. Роль дифференциальных уравнений в решении прикладных задач. Порядок нахождения уравнения кривой, основные методы.
курсовая работа, добавлен 25.11.2013Дифференциальные уравнения и геометрическая интерпретация решения. Особенность системы линейных дифференциальных уравнений с постоянными коэффициентами. Возведение в степень и извлечение корня, понятие об интеграле функции комплексного переменного.
контрольная работа, добавлен 22.11.2014Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.
презентация, добавлен 17.09.2013Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.
учебное пособие, добавлен 23.12.2014Определение приведенного квадратного уравнения и неполного квадратного уравнения, алгоритмы их решения. Расчет формулы дискриминанта, корней квадратного уравнения и теоремы Виета. Методы решения: разложение на множители, введение новой переменной и др.
конспект урока, добавлен 08.01.2016Ознакомление с общими характеристиками теории вероятности. Применение теоремы Бернулли, формулы полной вероятности, центральной предельной теоремы. Сложение и умножение вероятностей. Нахождение оптимального решения, руководствуясь "правилом Лапласа".
контрольная работа, добавлен 17.11.2015- 118. Теорема Коши-Бине
Назначение матриц в системах линейных уравнений, операции над матрицами, правила их сложения матриц и умножения на скаляр, транспонирование произведения двух матриц. Понятие и свойства определителя квадратной матрицы, доказательство теоремы Коши-Бине.
курсовая работа, добавлен 11.01.2015 Изучение методов решения систем линейных и нелинейных уравнений. Постановка краевых задач. Приближенное вычисление обыкновенных дифференциальных уравнений и уравнений c частными производными. Классификация дифференциальных уравнений второго порядка.
учебное пособие, добавлен 16.05.2010Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.
курс лекций, добавлен 08.12.2015Обыкновенное дифференциальное уравнение первого порядка, его решение. Геометрическое истолкование дифференциального уравнения. Теорема существования и единственности. Характер поведения интегральных линий системы уравнений в окрестности особой точки.
курс лекций, добавлен 28.10.2012Определение возможности применения метода осциллирующих функций к нахождению приближенного решения задачи Коши для дифференциального уравнения с отражением аргумента. Оценка полученной погрешности построенного решения, график построенного решения.
статья, добавлен 26.04.2019Вид частного решения уравнения n-го порядка. Определение значений линейных комбинаций функции и ее производных. Нахождение решения ДУ n-го порядка, когда все n условий заданы в одной точке. Множество интегральных кривых, проходящих через одну точку.
презентация, добавлен 17.09.2013Формула интерполяционного многочлена Лагранжа и особенности ее использования. Вычисление интеграла по формуле левых и правых прямоугольников. Решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядков, используя возможности SCILAB.
контрольная работа, добавлен 25.05.2020Формула классической вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности, Байеса, Бернулли, Пуассона. Числовые характеристики дискретных случайных величин: дисперсия и пр. Законы распределения непрерывной случайной величины.
курсовая работа, добавлен 04.01.2016