Методи дослідження та розв’язування задачі зважених найменших квадратів з наближеними вихідними даними
Дослідження існування та єдиності зваженого нормального псевдорозв’язку. Розробка алгоритмів розв’язування задачі зважених найменших квадратів з наближеними вихідними даними. Апробація отриманих результатів при математичному моделюванні фізичних процесів.
Подобные документы
Умови існування та єдиності розв'язку нелокальної крайової задачі для систем лінійних функціонально-диференціальних рівнянь загального вигляду. Визначення локалізації розв'язків у множині функцій з обмеженим ростом та дослідження питання про їх єдиність.
автореферат, добавлен 27.08.2015Дослідження існування глобальних класичних розв’язків у двофазній багатовимірній задачі Стефана для лінійного та квазілінійного рівнянь теплопровідности в задачах, які описують процеси горіння. Існування класичного розв’язку в стаціонарних задачах.
автореферат, добавлен 21.11.2013Метод найменших квадратів для визначення коефіцієнтів регресійної залежності. Система алгебраїчних рівнянь при визначенні коефіцієнтів регресійної залежності методом найменших квадратів. Приклад регресійного аналізу. Коефіцієнт регресійної залежності.
практическая работа, добавлен 19.05.2010Порівняння асимптотичних коваріаційних матриць статистичних оцінок параметрів регресії: оцінки, отриманої методом виправлення оціночної функції зважених найменших квадратів. Вивчення та аналіз параметрів моделі у функціональній та структурній моделях.
автореферат, добавлен 14.08.2015Умови порушення єдиності розв’язку задачі Діріхле з комплексними матричними коефіцієнтами в просторах гладких функцій з поліноміальним ростом на нескінченності для диференціального рівняння другого порядку. Принципи однозначної розв’язності задачі Коші.
автореферат, добавлен 24.07.2014Нерівності першого степеня з одним невідомим, квадратні нерівності. Метод інтервалів. Ірраціональні, показникові та логарифмічні нерівності. Типові задачі, що зводяться до розв'язування систем нерівностей. Алгебраїчні нерівності Кошіта та Гельдера.
лекция, добавлен 24.01.2014- 32. Точність та обчислювальна складність наближеного розв’язування нелінійних функціональних рівнянь
Створення апроксимаційних рівнянь, які б допускали можливість практичного розв’язання із визначенням числа усіх розв’язків. Обчислення характеристик рівнянь і параметрів ітераційних методів, що забезпечують виконання умов теорем існування і збіжності.
автореферат, добавлен 28.09.2015 Двостороння оцінка максимуму розв’язку задачі Неймана у необмежених областях, що "звужуються на нескінченності" для параболічного рівняння, що вироджується з абсорбцією. Поведінка розв’язку мішаної задачі для рівняння в залежності від геометрії області.
автореферат, добавлен 26.08.2015Визначення сутності симплекс-методу, як ітераційної обчислювальної процедури. Характеристика порядку розв’язування задачі лінійного програмування симплексним методом. Розгляд системи обмежень у векторній формі. Вивчення критерія оптимальності плану.
лекция, добавлен 14.02.2015Розгляд моделі лінійної регресії з вільним членом. Отримання необхідних та достатніх умов співпадання оцінки метода найменших квадратів та оцінки ортогональної регресії невідомих параметрів. Доказ теореми для вимірювань незалежних змінних з похибкою.
статья, добавлен 14.09.2016Відокремлення коренів алгебраїчних та трансцендентних рівнянь. особливості графічного методу розв’язування рівнянь. Знаходження рішення способом пропорційних частин. Комбінований метод (метод дотичних і хорд), його специфіка. Приклади розв’язування задач.
курсовая работа, добавлен 18.12.2012Встановлення умов існування та єдиності розв'язку обернених задач для параболічного рівняння на знаходження старшого коефіцієнта, множника у вільному члені. Особливості розв'язку у випадку нелокальних та інтегральних крайових умов та умов перевизначення.
автореферат, добавлен 28.07.2014Розробка оптимальних чисельних методів наближеного розв’язування жорстко некоректних задач. Розв'язання інтегральних рівнянь Фредгольма II роду з коефіцієнтами соболєвського типу гладкості за допомогою використання комбінації тіхоновської регуляризації.
автореферат, добавлен 20.07.2015Встановлення існування та єдності класичного розв’язку оберненої задачі для параболічного рівняння з виродженням, коли невідомий залежний від часу старший коефіцієнт прямує до нуля. Знаходження умов коректної розв’язності оберненої параболічної задачі.
автореферат, добавлен 29.09.2014Навчання практично застосовувати теоретичні відомості з використання базових алгоритмів для розв’язування задач з одновимірними масивами. Складання та реалізація алгоритмів та програм мовою С++ для обробки одновимірних масивів. Підтримка веб-застосувань.
лабораторная работа, добавлен 17.03.2015- 41. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
автореферат, добавлен 29.07.2014 Встановлення існування та єдиності розв'язку оберненої задачі визначення залежного від часу коефіцієнта при похідній за часом в одновимірному параболічному рівнянні. Задача визначення невідомого коефіцієнта, коли умови перевизначення є нелокальними.
автореферат, добавлен 25.08.2015Особливості навчальної програми вивчення рівнянь та нерівностей в школі, методика їх розв'язування. Розв'язування типових вправ з використанням теореми Вієта. Вивчення формули коренів квадратного рівняння. Математичний розрахунок дискримінанти та кореня.
разработка урока, добавлен 09.10.2018Апріорні оцінки сильних розв’язків задачі Діріхле та мішаної задачі для лінійних еліптичних недивергентних рівнянь другого порядку загального вигляду в околі ребра області за мінімальних вимог на коефіцієнти. Теореми існування розв’язків задачі Діріхле.
автореферат, добавлен 25.06.2014Вивчення методів розв’язку нестандартних задач. Особливості складання і розв’язування алгебраїчних текстових задач. Характеристика основ використання креслень для їх схематичного запису. Розгляд основних етапів проведення аналізу задачі для її рішення.
методичка, добавлен 07.04.2014Застосуванню тригонометрії до розв'язування задач з алгебри у старшій школі. Методичні особливості застосування тригонометрії до розв'язування. Встановлення коренів рівняння на певному відрізку. Розв'язування системи рівнянь і доведення нерівності.
статья, добавлен 05.02.2019Побудова асимптотичних розв'язків рівнянь керованого руху. Математичне дослідження складних систем. Метод розв'язування задачі оптимального керування з термінальним функціоналом на траєкторіях із запізненням. Оцінка властивостей множин досяжності.
автореферат, добавлен 28.07.2014Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
автореферат, добавлен 27.08.2014Вдосконалення математичної моделі задачі оптимізації розміщення орієнтованих прямокутників для класу неперервно диференційованих функцій, цілі, розробка чисельних методів їх розв’язання. Розробка програмного забезпечення для розв’язання задач оптимізації.
автореферат, добавлен 28.08.2014Обчислювальні методи розв’язку нелінійних рівнянь. Методи лінійної алгебри. Знаходження визначника матриці методом алгебраїчних доповнень. Інтерполювання функцій. Методи чисельного інтегрування функцій. Розв’язування звичайних диференціальних рівнянь.
лекция, добавлен 13.09.2010