Метод вращений (Якоби) для нахождения собственных значений и собственных векторов матриц
Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.
Подобные документы
Сущность и основные методы решения системы линейных алгебраических уравнений. Понятие линейной зависимости, ее представление. Характеристика метода исключения Гаусса и полного исключения Жордана. Основные правила определения элементов обратной матрицы.
лекция, добавлен 29.10.2013Решение математической задачи методом Гаусса, с выбором главного элемента. Расчеты линейных алгебраических уравнений по Гауссу-Жордано, Зейделю с заданной точностью и простыми итерациями. Вычисление определителя системы. Нахождение обратной матрицы.
задача, добавлен 22.06.2015Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.
презентация, добавлен 30.10.2013Аналитическое решение алгебраического уравнения n–ой степени (в радикалах). Примеры решения проблем собственных значений для нахождения функций от матриц и устойчивости линейных дифференциальных и разностных уравнений. Свойства доминирующего корня.
научная работа, добавлен 22.07.2014Методы решения систем линейных уравнений: Гаусса (последовательного исключения), Крамера, матричный метод. Классификация систем линейных уравнений по числу уравнений, неизвестных. Свойства определителей. Система ступенчатого вида с единственным решением.
контрольная работа, добавлен 23.04.2011Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.
учебное пособие, добавлен 24.10.2012Теорема с доказательством решения системы линейных алгебраических уравнений за конечное число итераций со стационарной матрицей. Конечный итерационный процесс в системе с коэффициентами. Матрицы алгебраической и итерационной систем для конечных процессов.
статья, добавлен 05.08.2020Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Методы решения линейных систем уравнений. Приведение системы к треугольному виду последовательным обнулением поддиагональных элементов первого и второго столбца как цель прямого хода преобразований в методе вращений. Особенности хода преобразований.
контрольная работа, добавлен 18.11.2013Развитие итерационных методов решения систем линейных уравнений, путем разработки итерационного метода с использованием аппарата q-дифференцирования. Проведение вычислительного эксперимента с помощью программного пакета Matlab. Методы решения СЛАУ.
статья, добавлен 27.07.2017Постановка задачи в операторной форме. Анализ её решения в виде линейной комбинации координатных функций. Изучение способов нахождения коэффициентов в каждом из рассматриваемых проекционных методов. Решение системы линейных алгебраических уравнений.
методичка, добавлен 13.09.2015- 63. Обратная матрица
Определение сущности и свойств обратной матрицы. Применение метода Гаусса-Жордана для нахождения обратной матрицы. Проблема выбора начального приближения в процессах итерационного обращения матриц. Решение системы линейных алгебраических уравнений.
реферат, добавлен 26.01.2016 Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.
контрольная работа, добавлен 23.06.2020Проверка точек нахождения в одной плоскости тетраэдра через расчет его объёма, длину высоты, расстояние между скрещивающимися рёбрами. Решение системы линейных алгебраических уравнений. Составление уравнения гиперболы в канонической системе координат.
задача, добавлен 20.01.2014Виды систем из p линейных алгебраических уравнений с n неизвестными переменными. Недостаток метода Крамера - трудоемкость вычисления определителей, когда число уравнений системы больше трех. Алгоритм исключения неизвестных переменных методом Гауса.
курсовая работа, добавлен 26.02.2014Рассмотрение методов решения систем алгебраических уравнений с блочными матрицами ленточной структуры. Ознакомление с общими условиями корректности метода матричной прогонки. Проведение проверки существования обычного LU-разложения для матрицы Якоби.
статья, добавлен 23.06.2018Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.
реферат, добавлен 02.02.2022Определение термина "ранг матрицы". Применение элементарного преобразования и приведение матрицы к трапецеидальному виду. Совместимость систем линейных уравнений, описание теоремы Кронекера-Капелли. Решение систем линейных уравнений методом Гаусса.
контрольная работа, добавлен 09.07.2015- 70. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
лекция, добавлен 28.07.2015 Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.
курсовая работа, добавлен 22.01.2016Правила решения систему линейных алгебраических уравнений методом Гаусса и Крамера. Порядок разложения вектора. Формирование уравнения медианы. Вычисление косинуса внутреннего угла треугольника. Расчет угла между ребрами пирамиды и площади грани.
контрольная работа, добавлен 25.08.2015Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.
лекция, добавлен 15.11.2010Применение метода простой итерации для решения систем линейных алгебраических уравнений. Оценка погрешности приближенного вычисления. Поиск пределов матрицы. Построение графиков непрерывных функций. Вычисление квадратного корня из положительного числа.
задача, добавлен 28.10.2017- 75. Метод Гаусса
Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.
задача, добавлен 24.11.2014