Обнаружение и распознавание текстов на изображениях сложных графических сцен с помощью свёрточных нейронных сетей

Особенности разработки интеллектуальной системы распознавания текста на фотографиях и видеокадрах сложных графических сцен. Реализация методов для обнаружения и локализации текстовых областей, распознавания символов с помощью сверточных нейронных сетей.

Подобные документы

  • Анализ эффективности методов оптического распознавания символов, решающих проблему наличия на изображении различных видов искажений. Измерения критериев и алгоритмов оценки эффективности анализируемых методов для каждого из наборов исходных данных.

    статья, добавлен 30.04.2018

  • Разработка новых методов решения проблемы предсказывания (определения) цен акций на фондовом рынке с помощью технологии датамайнинга и машинного обучения, а именно нейронных сетей как инструмента имитации агента, торгующего на фондовом или другом рынке.

    дипломная работа, добавлен 26.08.2016

  • Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.

    реферат, добавлен 20.03.2009

  • Понятие искусственных нейронных сетей. Модель и архитектура технического нейрона. Обучение нейронных сетей. Основные функциональные возможности программ моделирования нейронных сетей. Однослойный и многослойный персептроны. Принцип работы сети Кохонена.

    дипломная работа, добавлен 19.11.2015

  • Определение распознавания объектов как метода компьютерного зрения для идентификации объектов на изображениях или видео. Рассмотрение алгоритма обнаружения объекта методом машинного обучения и методом глубокого обучения с помощью средств Matlab.

    статья, добавлен 24.10.2020

  • Использование искусственных нейронных сетей, их способность к процессу настройки архитектуры сети и весов синаптических связей для эффективного решения поставленной задачи. Применение нейронных сетей в области телекоммуникаций, экономики и финансов.

    статья, добавлен 26.04.2017

  • Эволюция поколений символообрабатывающих ЭВМ. Этапы развитие искусственных нейронных сетей. Сравнение машины фон Неймана с биологической нейронной системой. Нейроинформатика как способ решения различных задач с помощью искусственных нейронных сетей.

    лекция, добавлен 06.09.2017

  • Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.

    лекция, добавлен 21.09.2017

  • Форма представления выходной информации. Рассмотрение способов её контроля. Обучение искусственных нейронных сетей. Исследование их преимуществ и недостатков. Источники и способы получения данных. Изучение особенностей применения нейронных сетей.

    курсовая работа, добавлен 16.05.2016

  • Число итераций, необходимых для обучения искусственных нейронных сетей. Распознавание образов интеллектуальной системой. Повышение качества и гибкости обучения структуры сети. Эффективность модульного принципа в плане уменьшения количества итераций.

    статья, добавлен 15.07.2020

  • Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.

    дипломная работа, добавлен 28.11.2019

  • Рассмотрение и характеристика главных особенностей метода использования искусственных нейронных сетей. Ознакомление со схемой Персептрона. Исследование и анализ основных принципов распознавания образов, которые применяются в вычислительной технике.

    контрольная работа, добавлен 26.05.2016

  • Понятие интеллектуальной информационной системы, классификация и особенности ИИС. Методика когнитивного анализа сложных ситуаций. Моделирование процессов обработки информации для принятия решений. Формальные логические модели. Модели нейронных сетей.

    лекция, добавлен 02.04.2012

  • Нейросетевые технологии, история возникновения нейронных сетей. Основные виды и применение искусственных нейронных сетей. Самоорганизующаяся карта Кохонена, задачи, решаемые с ее помощью. Создание компьютерной имитационной модели нейронной сети Кохонена.

    дипломная работа, добавлен 12.01.2012

  • Рассмотрено применение технологии искусственных нейронных сетей для реализации систем интеллектуального автоматического управления. Проведен сравнительный анализ различных схем нейроуправления. Алгоритмы и методы обучения искусственных нейронных сетей.

    статья, добавлен 02.04.2019

  • Создание алгоритма и программы для распознавания лица по фотографии c использованием библиотеки OpenCV методом искусственных нейронных сетей. Алгоритм бустинга для поиска лиц. Вычисление признаков и сравнение их совокупностей между собой разными методами.

    курсовая работа, добавлен 05.03.2019

  • Паттерны фондовых индексов. Предсказание цен на фондовом рынке. Два базовых алгоритма распознавания паттернов: совпадение по правилу и совпадение по шаблону. Подход распознавания паттернов индексов фондовых бирж на основе искусственных нейронных сетей.

    статья, добавлен 26.05.2017

  • Анализ методов и моделей интеллектуального анализа данных. Модификация методов и алгоритмов распознавания текста и лица. Значение программного обеспечения для решения задачи распознавания текстов и лиц. Режим работы программного обеспечение "DPro".

    диссертация, добавлен 24.05.2018

  • Искусственная нейронная сеть как метод анализа и распознавания образов. Обработка изображения и создание множества обучающих примеров с ошибками. Обучение нейронных сетей с использованием математического пакета Octave. Отбор и тест оптимальной сети.

    лабораторная работа, добавлен 14.12.2019

  • Обзор систем оптического распознавания изображений: ABBYY Finereader, SimpleOCR, FreeOCR, Microsoft Office Document Imaging. Алгоритм распознавания образов: захват кадра; предварительная обработка (предобработка); локализация и распознавание объекта.

    реферат, добавлен 08.06.2019

  • Понятие машинного зрения и распознавания образов, существующие разработки в области распознавания жестов глухонемых, основные требования и ограничения. Методы и этапы распознавания образов применительно к задаче распознавания языка жестов.

    дипломная работа, добавлен 21.09.2018

  • Исследование выделения объектов интереса на изображении на основе сверточных нейронных сетей. Анализ возможностей их применения для поиска объекта на изображении. Алгоритм обучения нейронной сети. Возможность обучения за счет "предсказания" границ.

    статья, добавлен 16.02.2025

  • Рассмотрение автоматизированного обнаружения дефектов на зданиях с использованием искусственного интеллекта. Изучение методов, включая YOLOv8 и ResNet, для оптимизации выбора зданий для ремонта. Применение нейронных сетей для точного выделения дефектов.

    статья, добавлен 30.10.2024

  • Разработка методики для автоматической сегментации спутниковых снимков по нескольким классам (здания, реки, дороги) на базе сверточных нейронных сетей. Особенности подготовки изображения для тренировки нейронной сети. Оценка эффективности нейронных сетей.

    статья, добавлен 11.01.2018

  • Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.

    контрольная работа, добавлен 30.08.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.