Равновероятностный синтез реализации случайного минимального графа смежности
Глобальные структуры алгебраических байесовских сетей. Описание схемы алгоритма равновероятного синтеза минимального графа смежности. Понятие и сущность алгебраических байесовских сетей. Выявление основных возможностей реализации минимальных графов.
Подобные документы
Ориентированные графы как структуры с конечным множеством вершин и ребер. Симметричное отношение смежности для неориентированного графа. Матрица смежности. Проверка присутствия ребра при помощи матрицы смежности. Отношение эквивалентности на вершинах.
контрольная работа, добавлен 25.10.2013Матрица смежности графа с множеством вершин. Построение ориентированного графа (орграфа) по заданной матрице смежности. Решение задачи линейного программирования с двумя переменными. Условие неотрицательности переменной. Прямая целевой функции на минимум.
контрольная работа, добавлен 17.01.2018Изучение и создание алгоритма решения задачи о выделении минимального остовного дерева. Понятие теории графов. Характеристика алгоритма Прима, Краскала, Борувки. Определение каркаса, алгоритм выделения минимального остовного дерева нагруженного графа.
курсовая работа, добавлен 03.11.2015- 4. Автоматическое обучение фрагментов знаний в алгебраических байесовских сетях по данным с пропусками
Анализ локальной задачи автоматического обучения в алгебраических байесовских сетях и пути ее решения, возможные трудности. Формирование набора вероятностных оценок истинности над фрагментом знаний с известной структурой по исходному набору литералов.
статья, добавлен 18.01.2018 Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.
методичка, добавлен 15.10.2016Ориентированные и неориентированные графы, петля, кратные дуги и рёбра. Степень вершины, полустепень исхода и захода графа. Существование цикла и контура. Способы представления графов: матрица смежности, инцидентности, модифицированный список смежности.
презентация, добавлен 26.07.2015Характеристика основных понятий матричных способов задания графов. Анализ определения замкнутого и незамкнутого маршрутов. Использование алгоритма Форда–Бэллмана. Особенность поиска минимального пути. Построение матрицы смежности и инцидентности.
курсовая работа, добавлен 14.01.2016Основные понятия и определение графа. Степень вершины графа. Особенности и свойства подграфа, пути, цепи и цикла. Характеристика связных графов. Анализ теоремы об оценке числа рёбер несвязного графа. Сущность понятий "дерево графа" и "лес графа".
методичка, добавлен 15.10.2016Преобразование матрицы смежности ориентированного графа в матрицу инцидентности. Бьерн Страуструп как разработчик языка Си++. Матрица Инцидентности как отношение между ребром и его концевыми вершинами. Листинг программы, руководство пользователя.
курсовая работа, добавлен 30.03.2015Основные понятия о теории графа. Матрица смежности неориентированного графа с вершинами. Матрица инциденций неориентированного графа с вершинами и ребрами. Линейный однонаправленный список для задания множества вершин. Фундаментальные циклы графа.
реферат, добавлен 27.03.2011Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.
контрольная работа, добавлен 29.08.2010- 12. Теория графов
Краткий перечень основных понятий теории графов как раздела дискретной математики. Понятия смежности и инцидентности. Матрицы смежности и инцидентности, достижимости и связности. Маршруты и пути. Применение методов теории графов в прикладных задачах.
методичка, добавлен 24.03.2015 Основные определения графа, способы его задания. Представление сетей радиосвязи графами. Алгоритм выделения компонент сильной связности. Кратчайшие остовы и пути в нагруженном графе. Алгоритмы построения паросочетаний графов. Особенности раскраски графа.
учебное пособие, добавлен 15.10.2016Техническое проектирование радиоэлектронных средств. Решение задачи компоновки модулей в определённые конструктивные единицы. Разрезание матрицы смежности, соответствующее разрезанию графа на три куска. Недостатки матричного метода разрезания графа.
статья, добавлен 25.10.2018История возникновения теории графов. Основные понятия: ориентированный граф, петля, кратные ребра, гипердуги, подграфы. Способы представления графов в компьютере. Матрица смежности, инцидентность вершин и ребер, массивы дуг. Обзор задач теории графов.
курсовая работа, добавлен 14.06.2011Развитие теории графов, их применение в различных отраслях научного знания. Понятие, определение и изображение графа, системы связей между объектами. Описание структуры графов. Разработка программы для определения сильных компонент графа, баз и антибаз.
курсовая работа, добавлен 24.04.2011Изучение ориентированного конечного графа. Характеристика инцидентности ребра и вершины. Основы построения матриц смежности и инцидентности. Рассмотрение примеров объединения графов. Анализ условий и компонентов связности. Изучение эйлеровых цепей.
презентация, добавлен 31.10.2013Математическое описание графа множествами вершин, списками смежности и матрицей инцидентности. Суть сетки весов соответствующих неориентированным конечностям. Анализ путей отбрасывания истоков и стоков. Поиск остевого дерева алгоритмом Прима-Краскала.
курсовая работа, добавлен 04.02.2015Методика определения хроматического числа неориентированного графа. Пример графа для иллюстрации логики нахождения правильной раскраски. Характеристика метода нахождения пути минимального окрашивания, который основан на решении задачи о покрытии.
презентация, добавлен 25.09.2017Определение значения и порядок построения матриц смежности вершин с помощью матриц смежности вершин исходных графов. Расчет максимального потока и разреза с минимальной пропускной способностью в транспортной сети. Доказательство равномощности множеств.
контрольная работа, добавлен 27.03.2012Сущность и функции графа. Связь между помеченными и непомеченными графами. Связность любой пары вершин графа простой цепью. Компонента графа. Метрические характеристики графа. Теорема Д. Кенига. Ориентированный, неориентированный помеченный граф (орграф).
презентация, добавлен 15.09.2017Применение теории графов в современной вычислительной технике и кибернетике. Матрица смежности и инциденций вершин. Задание множества вершин, достижимых из вершины v, с использованием линейного однонаправленного списка. Фундаментальные циклы графа.
контрольная работа, добавлен 24.04.2011Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.
курсовая работа, добавлен 13.09.2012Оценка радиального критерия предфрактального графа, порожденного затравкой-звездой. Создание полиномиального алгоритма размещения центра абстрактного математического объекта, при сохранении смежности старых ребер. Анализ вычислительной сложности системы.
статья, добавлен 26.05.2017Характеристика ориентированного графа, путь и длина пути в графе. Элементарный путь и контур. Полустепень исхода и полустепень захода вершины. Матрица смежности графа и матрица инциденций. Двухполюсная транспортная сеть и условия ее существования.
контрольная работа, добавлен 15.12.2010