Предмет теории вероятностей

Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.

Подобные документы

  • Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.

    презентация, добавлен 25.09.2017

  • Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.

    реферат, добавлен 13.03.2017

  • Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.

    учебное пособие, добавлен 28.12.2013

  • Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.

    курсовая работа, добавлен 11.06.2020

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Типовые вероятностные задачи энергетического характера. Определение вероятностей случайных событий. Основные теоремы теории вероятностей. Законы распределения случайных величин, числовые характеристики их функций. Случайные явления, события и величины.

    учебное пособие, добавлен 15.06.2015

  • Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.

    дипломная работа, добавлен 27.09.2012

  • Изучение предмета теории вероятностей. Понятия условной и полной вероятности, случайных величин. Характеристика генеральной совокупности и выборки, вариационного ряда. Описание методов точечной и интервальной оценки, дисперсионного анализа, корреляции.

    учебное пособие, добавлен 10.05.2016

  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад, добавлен 13.03.2022

  • Схема Бернулли, её определение и задачи, которые решаются по ней. Важное условие, без которого схема Бернулли теряет смысл. Возможные исходы при независимых испытаниях одинаковых вероятностей. Теорема и формула Бернулли, определение вероятностей событий.

    контрольная работа, добавлен 04.01.2015

  • Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.

    курс лекций, добавлен 02.09.2016

  • События, основные распределения в теории вероятностей. Операции над событиями. Формула полной вероятности. Формула Бейеса и Бернулли, повторение испытаний. Случайные величины, закон распределения дискретной случайной величины, биноминальное распределение.

    курсовая работа, добавлен 21.11.2012

  • Понятия о случайных величинах и функциях распределения. Теоретические распределения вероятностей: биномиальное, пуассоновское и нормальное. Числовые характеристики случайных величин, их определение и вычисление - математическое ожидание и дисперсия.

    лекция, добавлен 21.08.2015

  • Системы дискретных и непрерывных случайных величин, составляющие которых дискретны и непрерывны соответственно. Функция распределения системы двух случайных величин, плотность вероятностей. Аппарат числовых характеристик системы случайных величин.

    контрольная работа, добавлен 20.09.2013

  • Математические законы теории вероятностей. Рассмотрение статистических закономерностей, свойственных массовым явлениям. Сходимость последовательностей случайных величин. Изучение закона больших чисел. Возможности предсказаний массовых случайных явлений.

    лекция, добавлен 18.03.2014

  • Ценность теории вероятностей для общего образования. Краткая историческая справка появления азартных игр, применение теории в них. Сущность закона Бернулли. Художественная правда и вероятность сложного события. Краткая характеристика теории рекламы.

    доклад, добавлен 21.02.2013

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.

    презентация, добавлен 24.06.2014

  • Предмет теории вероятностей, основное содержание и законы данной науки, направления ее исследования. Типы анализов, оценка их конечных результатов. Моделирование случайных величин методом Монте-Карло (статистических испытаний), его принципы и значение.

    курс лекций, добавлен 02.02.2012

  • Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.

    учебное пособие, добавлен 15.01.2014

  • Характеристическая функция суммы независимых случайных величин. Центральная предельная теорема. Закон больших чисел в форме Бернулли. Основные задачи математической статистики. Группировка данных по интервалам, определение частот элементов выборки.

    лекция, добавлен 28.09.2017

  • Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.

    учебное пособие, добавлен 25.11.2013

  • Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.

    учебное пособие, добавлен 29.01.2014

  • Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.

    лекция, добавлен 26.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.