Численное интегрирование и дифференцирование функций

Задачи численного интегрирования. Вычисление производной заданной функции, интерполяционного многочлена Ньютона. Решение дифференциальных уравнений. Вычисление приближенных значений интеграла методом треугольников, методом трапеций и методом Симпсона.

Подобные документы

  • Решение нелинейных уравнений численными методами: методом половинного деления, методом Ньютона. Определение промежутков, содержащих корни. График функции cos(x)ch(x)+1=0. Создание функции нахождения точных значений корней с помощью программы MatLab.

    лабораторная работа, добавлен 10.10.2015

  • Известные формулы теории матриц для обыкновенных дифференциальных уравнений. Вычисление оболочек составных и со шпангоутами простейшим методом "сопряжения участков интервала интегрирования". Свойства переноса краевых условий в методе С.К. Годунова.

    монография, добавлен 10.08.2017

  • Наибольшее и наименьшее значение функции. Поиск неопределенных интегралов, проверка правильности результата с помощью дифференцирования. Изменение порядка интегрирования в двойном интеграле. Решение системы дифференциальных уравнений операционным методом.

    контрольная работа, добавлен 19.03.2012

  • Аппроксимации функций, численное дифференцирование и интегрирование. Оценка погрешности квадратурных формул Ньютона-Котеса. Поиск минимума, случай одной переменной. Метод золотого сечения. Интерполяционный многочлен Ньютона для равноотстоящих узлов.

    курс лекций, добавлен 03.07.2013

  • Вычисление значения определенных интегралов численно методами прямоугольников, трапеций, Симпсона, квадратур Гаусса-Лежандра, Монте-Карло. Изучение методов интегрирования и написание программы для нахождения значения интеграла разными методами.

    практическая работа, добавлен 02.06.2017

  • Способы численного интегрирования функции одной переменной. Вычисление значения определенного интеграла методом правых прямоугольников. Деление криволинейной трапеции на конечное число частей. Определение площади ступенчатой фигуры. Построение блок-схемы.

    контрольная работа, добавлен 19.01.2020

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.

    курсовая работа, добавлен 20.02.2019

  • Расчет центра тяжести однородной фигуры, ограниченной линиями. Проверка формулы Грина для интеграла. Исследование рядов на сходимость. Изменение порядка интегрирования, вычисление интеграла. Расчет области сходимости степенного ряда с заданной точностью.

    контрольная работа, добавлен 27.06.2017

  • Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.

    научная работа, добавлен 01.02.2013

  • Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.

    контрольная работа, добавлен 07.11.2018

  • Исследование системы на совместность методом Гаусса. Решение системы линейных алгебраических уравнений двумя методом Крамера и средствами матричного исчисления. Решение пределов, дифференциальных уравнений, определение производных функций и интегралов.

    контрольная работа, добавлен 09.04.2012

  • Обучение учащихся и студентов отысканию производной сложной функции. Правила вычисления производных алгебраической суммы функций, произведения и частного функций. Упражнения на применение изученных формул и правил. Дифференцирование сложной функции.

    статья, добавлен 18.02.2020

  • Решение простейших дифференциальных уравнений первого порядка. Уравнения в полных дифференциалах, интегрирующий множитель. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений. Приближенные методы интегрирования.

    курсовая работа, добавлен 23.10.2017

  • Алгоритм вычисления интеграла с заданной точностью. Формулы левых, правых и средних прямоугольников. Составная функция трапеции. Квадратурные формулы Ньютона-Котеса. Принцип Рунге практического оценивания погрешностей. Расчеты в малом и в целом.

    презентация, добавлен 30.10.2013

  • Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

    статья, добавлен 09.05.2021

  • Решение системы линейных уравнений методом Гаусса, нахождение предела и производной функции. Составление уравнения касательных, схематичное построение графиков. Вычисление расширенной матрицы, определение промежутков знаков постоянства и экстремумов.

    контрольная работа, добавлен 21.10.2014

  • Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.

    курсовая работа, добавлен 04.11.2012

  • Разработка приближенных методов вычисления определенных интегралов. Классические методы численного интегрирования по квадратурным формулам - наиболее распространенные методы вычисления одномерных определенных интегралов. Сущность метода прямоугольников.

    курсовая работа, добавлен 20.05.2013

  • Решение математической задачи методом Гаусса, с выбором главного элемента. Расчеты линейных алгебраических уравнений по Гауссу-Жордано, Зейделю с заданной точностью и простыми итерациями. Вычисление определителя системы. Нахождение обратной матрицы.

    задача, добавлен 22.06.2015

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Использование простейших квадратурных формул для приближенного вычисления интегралов: формулы трапеций, средних прямоугольников, Симпсона, Чебышева. Алгоритм и программная реализация метода Чебышева для нахождения значения интеграла в среде Tubro Pascal.

    курсовая работа, добавлен 02.11.2010

  • Графическая иллюстрация метода трапеции. Примеры использования метода трапеций для приближенного вычисления определенных интегралов. Промежуточные вычисления для определения значения определенного интеграла. Вычисления интегралов Delphi методом трапеций.

    курсовая работа, добавлен 27.11.2018

  • Примеры решения математических заданий на нахождение матрицы, производной методом дифференциального исчисления, вычисление определителя четвертого порядка, системы линейных алгебраических уравнений методом Крамера и средствами матричного исчисления.

    контрольная работа, добавлен 16.04.2014

  • Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.

    контрольная работа, добавлен 16.10.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.